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FOREFTORD 

This document i s  the Technical. Report f o r  t he  Study of Trajectories and 
Upper Stage Propulsion Requirements f o r  Exploration of the Solar System. 
study e f fo r t  was sponsored by the M i s s i o n h a l y s i s  Division of NASA Headquarters, 
OUT, Moffett Field, California,  under Contract No. w2-2928.  

The 

The complete r e su l t s  of the study are contained i n  the following volumes: 

Volume I - Swmnary 
Volume I1 - Technical Report 
Volume I11 - User's Manual f o r  Power-Limited Trajectory 

Optimization Computer Program 

The current study i s  an extension t o  the or ig ina l  one-year contract  which 

Interim quarterly reports  published under the 
began i n  Ju ly  1965. 
August 1966 t o  September 1967. 
contract extension axe United Aircraf t  Research Laboratories Report E-910352-10, 
November 1966, and F-910352-11, February 1967, both en t i t l ed  "Study of Trajector ies  
and Upper Stage Propulslon Requirements for  Exploration of t he  Solar System", and 
F-910352-12, "Aids for Analyzing Constant-Thrust, Low-Acceleration Propulsion 
Systems " 

The period of perfomnance for  the extension was from 
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SECTION I 

SUMMARY 

Th i s  report  summarizes the work accomplished under Modification No. 4 of NASA 
Contract No. NAS~-2928 between the  United Aircraf t  Research Laboratories and the  
Mission Analysis Division, Office of Advanced Research and Technology. 

Objectives and Scope 

The basic  objective of t h i s  research e f f o r t  is t o  develop user-oriented 
computer programs fo r  solving selected t ra jec tory  and system optimization problems 
charac te r i s t ic  of low-accelerati on, power - 1 i m i  ted, constant -thrus t ( e lec t r i ca l ly  
propelled) interplanetary vehicles. 
system optimization problems was first formulated by the calculus of variations,  
and selected problems from t h i s  se r ies  were solved by the implici t  f i n i t e -  
difference Newton-Raphson algorithm. 
t ra jec tory  phase with the planetocentric phase ( for  low acceleration solely or i n  
combination with high acceleration) was analyzed t o  j u s t i f y  the computational 
separation of each phase i n  the minimization of the overal l  vehicle mass. 

A s e r i e s  of hel iocentr ic  t ra jec tory  and 

The problem of combining the hel iocentr ic  

Major Results and Accomplishments 

In  general, the research e f for t  produced programs which simultaneously 
optimized both the  propulsion system and the t ra jec tory  (system-trajectory optimi- 
zations ) , a combined high- and low-acceleration mass minimization program, a 
suggested procedure for  optimizing an a l l - e l ec t r i c  vehicle, improvements i n  the 
previously developed constant-thrust, a single-coast system-trajectory optimization 
program, and complete sets of var ia t ional  equations for  a series of system- 
t ra jectory optimization problems of near-term and future  in t e re s t .  Although 
attempts were not m a d e  t o  solve a l l  of the formulated problems of the ser ies ,  those 
tha t  were successfully programmed represent a considerable achievement i n  the 
economical computation of accurate, optimum, constant-thrust, multiple-coast, power- 
l imited t ra jec tor ies ;  especially i n  view of the f ac t  tha t  the propulsion system 
parameters a re  simultaneously optimized fo r  given hyperbolic excess speeds and 
variable power. 

Summarized below are specif ic  major r e su l t s  and accomplishments of several 
programming, numerica1,and analyt ical  studies which contributed t o  the formulation, 
development, and subsequent u t i l i za t ion  of the object computer program. Three 
general areas of e f for t  are presented. These include, f irst ,  the computer programs 
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developed f o r  analyzing cer ta in  power-limited, hel iocentr ic  t ra jec tory  and system 
optimization problems, and fo r  minimizing the mass of mixed high- and low- 
acceleration propulsion vehicles.  
and ana ly t ica l  treatments concerning the problem of thrust ing within the planet ' s  
sphere of influence ( l o w  acceleration so le ly  or  i n  combination with high acceler- 
a t ion)  and the associated problem of calculating t r a j ec to r i e s  which t r a n s i t  the 
gravi ta t ional  f i e lds  of both the planet and the sun. The th i rd  e f f o r t  consists of 
the var ia t ional  formulations for  t ra jec tory  problems of i n t e re s t  not only t o  the 
present study but a l so  of general i n t e re s t  for future programming e f fo r t s  and 
subsequent mission mode studies.  

Presented next are the results of the numerical 

From these several  areas of study, additional problems of both a t ra jec tory  
and system nature emerge which are of i n t e re s t  i n  the overa l l  plan of analyzing 
e l e c t r i c  propulsion mission modes and concepts. These important areas are 
presented under Recommendations fo r  Future Studies. 

DeveloDed Commter Prosrams 

1. Optimization of Heliocentric Power-Limited Trajectories . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Planet-to-planet rendezvous is  treated With an in te rna l  discrimination 

between one or  two coast periods. 
e i the r  one o r  two coasts allowed. Hyperbolic excess speeds are  t o  be specified at 
both departure and a r r i v a l  for  the rendezvous whereas only the departure need be 
given for  the flyby ( f i n a l  hyperbolic speed i s  open). In  both modes the  option is  
given for  optimizing ei ther  the exhaust veloci ty  and powerplant f ract ion.  Power, 
a function of hel iocentr ic  posit ion o r  constant, is  an option as i s  the choice of 
two- or three-dimensional t r a j ec to r i e s .  

One-way planetary flybys are included with 

A round-trip stopover mission can be optimized with respect t o  the d i s t r i -  
bution of outbound and inbound legs fo r  fixed t o t a l  t r i p  t i m e ,  planetary stay time, 
and given hyperbolic veloci t ies .  The hyperbolic veloci t ies  are  t o  be specified a t  
Earth departure, planetary a r r i v a l  and departure, and ei ther  specified o r  l e f t  
open for  Earth a r r iva l .  The variable-thrust, constant-pmer operating mode i s  used. 

A user's manual was developed as par t  of th i s  programming e f f o r t .  
Sufficient information and guidelines are described t o  reduce the t i m e  required i n  
familiarizing the user With the general operating character is t ics  of the program 
and t o  expedite the computation of desired t ra jec tor ies .  
Volwne I11 of t h i s  report  and i s  considered t o  be an in tegra l  pa r t  of the helio- 
centr ic  t ra jec tory  optimization program. 

This manual i s  given i n  

2. Minimization of Hybrid-Thrust Vehicle Mass 
- - - - e _ - _ _ _ - _ - _ _ _ _ _ _ _ _  

The i n i t i a l  mass on Earth parking orb i t  i s  minimized f o r  a vehicle employing 
mixed high- and low-acceleration propulsion. The f l i g h t  modes are parking 
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orb i t  t o  parking orb i t ,  one-way flyby, and round-trip stopover. I n  the first case, 
high thrus t  is  used fo r  departure and ar r iva l ,  while low-thrust is  employed i n  
between. 
a r r iva l .  Actual masses (not 
dimensionless f rac t ion)  are computed fo r  the high-thrust and low-thrust systems 
once payload mass and hyperbolic speeds are given. 
determine the optimum combination of high-low thrust  which r e su l t s  i n  minimum 
vehicle mass f o r  the given payload. 
through the specif icat ion of cer ta in  engine parameters. 

I n  the second case, there is no high-thrust propulsion at  planetary 
The third case i s  a cordbination of the first two. 

A search procedure i s  used t o  

A range of high-thrust propulsion i s  possible 

3. Improved Single-Coast Trajectory Program . . . . . . . . . . . . . . . . . . . .  
The previous single-coast, constant-thrust program was improved by 

employing closed-form expressions fo r  optimum exhaust velocity and powerplant 
f rac t ion  which are based on a given thrustor  eff ic iency function and a simplified 
payload fract ion def ini t ion.  These expressions are  used i n  conjunction with the 
t ra jec tory  optimization subroutine t o  obtain r e su l t s  of i n t e re s t  by themselves or 
for  use as s t a r t i n g  guesses for  an improved payload f rac t ion  def ini t ion.  This 
improved def in i t ion  accounts f o r  propellant tanks, t i e - i n  s t ructure ,  and thrustor  
mass and eff ic iency varying with exhaust velocity.  
powerplant f rac t ion  are computed fo r  rendezvous only (specified hyperbolic velocity 
at departure and a r r i v a l )  and f o r  e i the r  o r  both payload def ini t ions.  

Optimum exhaust velocity and 

A closed-form expression i s  employed fo r  estimating the maximum powerplant 
spec i f ic  mass which yields zero payload for  a given t ra jectory.  Computations of 
specif ic  masses greater than t h i s  maximum are avoided. 

Heliocentric/Planetocentric Trajectory and System Analyses 

1. Combined High-Low Thrusting Within the Planet 's  Sphere of Influence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
A numerical analysis was performed t o  determine the effects of neglecting 

the low-thrust system's operation within the planet ' s  ac t iv i ty  sphere immediately 
after high-thrust burnout. The t ra jec tory  problem was analyzed by numerically 
integrating the planetocentric equations of motion fo r  both high- and low-thrust 
operation u n t i l  the  sphere of influence i s  reached. I n  general, the t i m e  i n  which 
the low-thrust system has t o  ac t  i s  so short  tha t  there i s  negligible difference 
i n  performance i f  the given hyperbolic excess speed is  assigned t o  the high-thrust 
system, and the low-thrust system i s  assumed t o  start  (hel iocentr ical ly)  a t  the 
center of the massless point planet.  Both departure and capture modes were 
investigated for  Jupi ter ,  Mercury, and Earth. 

In  terms of mission and systems analyses, the combining of high-thrust 
planetocentric and low-thrust hel iocentr ic  phases as separate regions related only 
by the  hyperbolic excess velocity is  a reasonable assumption. 
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2. Low-Acceleration Planetocentric Sp i r a l  - - - - - - - - - - - - - - - - - - -  
The low-thrust sp i r a l ,  departure or capture, was studied by using analyt ic  

expressions available i n  the literature. Two aspects were studied, first, the 
s p i r a l  about a s ingle  gravity f i e l d  which i s  assumed t o  extend t o  i n f i n i t y  and 
second, a s p i r a l  t ha t  accounts f o r  properly switching the computations from the 
planet ' s  gravi ty  f i e l d  t o  tha t  of the sun (see Item 3 following). 
t ra jec tory  requirements were represented by equations giving the burnout or f i n a l  
mass r a t i o  as a function of exhaust velocity and powerplant f ract ion.  The study 
resulted i n  a procedure (not programmed) for  optimizing the exhaust velocity and 
powerplant f rac t ion  of an a l l - e l ec t r i c  vehicle tha t  goes from parking orbi t ,  
through a hel iocentr ic  transfer,and either captures on a planetary parking o rb i t  
or a t t a ins  some f i n a l  hel iocentr ic  posi t ion or velocity.  

The s p i r a l  

3. HeliocentricLPlanetocentric Trajectory Matching - - - - - -  - - - - - - - - - - - - - - - -  
A theore t ica l  study of the motion of a low-thrust vehicle as it moves 

between a planetary gravity f i e l d  and the so la r  f i e l d  was performed t o  account for  
the planetary perturbations i n  the performance calculations. Both s p i r a l  and 
hyperbolic escape t r a j ec to r i e s  were considered. For the  low-thrust sp i r a l ,  an 
equation is  presented for  computing the performance up t o  the proper t i m e  a t  which 
the calculation i s  transferred t o  a hel iocentr ic  reference with no vehicle posit ion 
of fse t  with respect t o  the planet.  Relations fo r  the required velocity and posit ion 
of fse t s  a re  derived for  the low-thrust hyperbolic t ra jec tor ies .  I n  both cases it 
i s  shown tha t  the e r ror  i n  the approximations i s  on the order of t he  r a t i o  of the  
mass of the planet t o  that  of the sun. The ef fec t  of f i n i t e  periplanet radius i s  
a l so  of the same order. 

4. Aids f o r  Analyzing Constant-Thrust Systems . . . . . . . . . . . . . . . . . . . . .  
The closed-form expressions fo r  optimum exhaust velocity and powerplant 

f rac t ion  used i n  the improved single-coast program were plot ted t o  develop a series 
of graphs for  quickly estimating the performance of constant-thrust systems. Given 
the t ra jec tory  requirements i n  terms of J (J = la2 d t )  and powered t i m e ,  the  
optimum system parameters may be quickly estimated f o r  a given powerplant spec i f ic  
mass, CY,,,, and thrustor  efficiency parameter, d. For the same input values and parameters, 
a graph i s  used t o  estimate the maximum powerplant spec i f ic  mass which produces 
zero payload. Although the foregoing graphs are f o r  the simplified payload 
f rac t ion  (defined as the f i n a l  mass f rac t ion  less the powerplant f ract ion) ,  
equations of the optimum system parameters fo r  the improved payload def in i t ion  were 
developed along with possible procedures fo r  the i r  solution. 
programmed as par t  of the improved single-coast constant-thrust optimization 
program. 

These equations were 
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Variational Formulations of Heliocentric Trajectory Problems 

Complete sets of d i f f e r e n t i a l  equations and related t ransversal i ty  conditions 
for  the following problems were developed by use of the calculus of variations.  
The l i s t  i s  qui te  extensive, and not a l l  the problems were programmed f o r  solution 
by the t ra jec tory  optimization deck. 

1. The first problem concerns three-dimensional t ra jec tory  and control 
optimization with the  thrustor  constrained t o  constant-exhaust-velocity on-off 
operation. The power available I s  a given function of posit ion and t i m e  corres- 
ponding t o  decaying radioisotope power or so la r  power. The objective i s  maximum 
f i n a l  mass fract ion for  given values of powerplant spec i f ic  weight, powerplant 
fraction, and exhaust velocity.  
rendezvous, (b)  planetary flyby, ( c )  flyby a t  a given radius, and (d )  o r b i t a l  
t ransfer .  

The boundary conditions correspond t o  ( a )  planetary 

2. This problem includes a l l  of problem 1, but i n  addition, the powerplant 
fraction, P and the  exhaust velocity, C, as w e l l  as the t ra jec tory  and the 
associated s teer ing program, a re  t o  be optimized. The objective function i s  
maximum payload f rac t ion  which is  defined t o  be everything that  i s  l e f t  a t  the end 
of the mission except the powerplant, thrustor ,  and the s t ructure .  

W' 

3. I n  t h i s  problem, two separate propulsion un i t s  are used, one before and 
one after the coast period. The exhaust velocity and powerplant f rac t ion  of each 
uni t  are optimized with respect t o  f i n a l  payload fract ion.  

4. This problem is the same as problem 1 except t h a t  t he  thrust-acceleration 
vector is  constrained t o  make a constant angle with respect t o  the radius vector. 
One constant angle i s  allowed before coast and another after coast. These two 
angles are t o  be separately optimized with respect t o  maximum f i n a l  mass. 

5. ?"ne round-trip stopover mission is  treated f o r  minimizing the mass of the 
e l ec t r i ca l ly  propelled vehicle ( a f t e r  staging of the i n i t i a l  high-thrust Earth 
departure propulsion fo r  a given payload back a t  Eartd. 
Earth departure and planetary a r r i v a l  and departure are included along with 
atmospheric braking a t  Earth return.  
employed for  the inbound and outbound hel iocentr ic  t ransfers ;  the la t ter  system - 
including powerplant, thrustor,  and tankage - i s  staged a t  the  planet along with 
the capture high-thrust stage. The t ra jec tory  optimization includes optimizing the 
d is t r ibu t ion  of l eg  times, the launch date fo r  fixed t r i p  t i m e  and planetary s t ay  
time, and the direct ions of the hyperbolic excess veloci t ies  a t t r ibuted t o  high 
thrus t  . 

High-thrust impulses a t  

Two power-limited propulsion systems are 

The corresponding variable-thrust solution of the round-trip stopover 
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mission is required as a starting approximation. 
transversality conditions are included corresponding to the constant-thrust case. 

Accordingly, variable-thrust 

6 .  A round-trip planetary flyby is considered for the variable-thrust 

The second part is solved if the first produces a 
operating mode. The problem is treated in two parts: 
radius, and a fixed periradius. 
periradius lower than the minimum bound imposed by a flight constraint; e.g., 
radius of the sensible atmosphere. 
at the planet, both the outbound and inbound legs are solved for simultaneously. 
The best launch date, best flyby date, and the optimum characteristics of the flyby 
encounter are computed. 

no constraint on the peri- 

By the use of internal transversality conditions 

7 .  Although not a calculus of variations problem, the problem of substituting 

Analytic solutions for 

These solutions, 

analytic solutions for numerical solutions in the coast regions was investigated as 
a possible approach to reducing the number of mesh points. 
both the trajectory and the primer vector in the coast regions are developed and 
coupled with the numerical procedure at the switching points. 
however, were not incorporated into the developed computer programs (Item 1, above). 

Recommendations for Future Studies 

The following list of recommended studies is a result of the background and 
experience obtained in the performance of the study contract. The list is limited 
to those activities which would directly aid in expanding current capabilities of 
power-limited flight analysis and in applying such capabilities to the ultimate 
goal of determining the role of electrically propelled spacecraft in the explor- 
ation of the solar system. It should be noted that the first three items listed 
are essentially study projects with the third being oriented more towards a survey. 
The remaining items are basically tasks which contribute to an overall goal of 
developing valuable study tools for power-limited systems and would therefore 
contribute significantly to the efforts of the first three recommended studies. 

1. A system study should be initiated to determine the implications of high- 
plus-low-acceleration mission modes on the development of candidate power systems 
and thrustors and to the identification and, consequently, planning of the role of 
electrically propelled vehicles in solar system exploration. Such a study should 
have as its objective the comparison and evaluation of projected power systems and 
thrustors as related to a range of unmanned and, possibly, manned missions. 
addition, the study should determine desirable and feasible characteristics of 
future primary propulsion power systems and should attempt to combine these 
characteristics (for different classes of powerplants) into a postulated design 
which would perform all or most of the missions either singly or by "clustering." 

In 

2. To ensure the broadest possible stimulation of new mission and flight mode 
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concepts and t o  expedite the evaluation of such concepts, a mission/system analysis 
aids manual would be an invaluable too l .  The s p i r i t  and philosophy of such an aids  
manual would p a r a l l e l  t h a t  of the NASA Planetary Fl ight  Handbook, SP-35. Because 
of the coupling between the propulsion system and the  power-limited t r a j ec to ry  it 
i s  not possible t o  merely catalogue tab les  or graphs of t ra jec tory  requirements as 
i s  done for impulsive t ransfers .  Therefore, a manual i s  envisioned which would 
include not only representative t ra jec tory  requirements but a l so  techniques for  
estimating optimum constant-thrust system parameters, methods of extending payload 
def ini t ions and computing the  associated parameters, guidelines fo r  determining 
mixed-thrust t ra jec tory  requirements, and general information and background da ta  
from past  system and mission s tudies .  An addi t ional  poss ib i l i t y  is the inclusion 
of a se r ies  of computer programs fo r  solving spec i f ic  t ra jec tory  problems. 

3. There presently ex i s t s  several  diverse computer programs for solving 
essent ia l ly  the same power-limited t ra jec tory  problem. A survey should be made of 
these computer too ls  t o  ident i fy  t h e i r  capabi l i t i es ,  l imitat ions,  and s imi l a r i t i e s  
such t h a t  the poss ib i l i t y  of combining some of them could be investigated. The 
objective here i s  t o  develop combined programs which use the bes t  features  of each 
fo r  par t icu lar  problems. For example, a cer ta in  program may be capable of quickly 
solving the so la r  probe problem but requires diff icul t - to-obtain input guesses for  
cer ta in  variables.  These may be prodded by another program which solves 
essent ia l ly  the same problem more slowly but requires only an unsophisticated 
s t a r t i ng  solution. In other cases it may be evident t ha t  some par t icu lar  power- 
l imited t ra jec tory  problem i s  more conveniently and quickly solved by a cer ta in  
numerical technique than tha t  used i n  another program. 

4. The preliminary procedure developed for  optimizing the exhaust veloci ty  
and powerplant f rac t ion  with respect t o  payload f rac t ion  fo r  a single-stage 
e l e c t r i c  propulsion system should be programed. This single-stage system is 
capable of two f l i g h t  modes : 1) planetary parking o rb i t  departure, hel iocentr ic  
t ransfer  and planetary parking o rb i t  capture, and 2)  planetary parking o rb i t  
departure and hel iocentr ic  t ransfer  t o  a hel iocentr ic  posit ion and velocity.  

5. The developed multiple-coast t r a j ec to ry  optimization program should be 
modified t o  accept the expanded payload f rac t ion  def in i t ion  i n  a manner similar t o  
tha t  accomplished i n  the or ig ina l  single-coast program. The capabi l i ty  of allowlng 
for  any thrustor  eff ic iency and spec i f ic  mass var ia t ion with exhaust velocity 
should a l so  be included. This modification i s  considered t o  be an add-on item 
using the approximation techniques employed i n  the single-coast program modifi- 
cation and i s  not meant t o  be a reprogramming e f f o r t .  

6. Efforts  should be made t o  apply the basic developed computer algorithm t o  
the problem of variable mesh point spacing. 
t o  determine the added f l e x i b i l i t y  and broadened t ra jec tory  problem scope tha t  
variable mesh spacing produces. 

A n  investigation should be i n i t i a t e d  



7. The remaining var ia t ional  problems which were formulated but  not solved 
should be investigated by the basic  computer algorithm. 
here i s  the constant-attitude, solar-powered t ra jectory,  the  round-trip flyby, the  
o r b i t a l  transfer,  and the  staging of one (of two) e l e c t r i c  propulsion system before 
coast . 

O f  par t icular  i n t e re s t  

8 .  I n  analyzing the implementation of the f ini te-difference Newton-Raphson 
algorithm made t o  date, two facts  stand out very clear ly .  
and complex job t o  complete a computer code f o r  a given problem. 
d i f f i cu l ty  w i l l  be eased i n  the  future by the use of generalized subroutines now 
completed, t h i s  advantage will be counteracted by the  necessity and des i re  t o  
a t tack  more d i f f i c u l t  problems. Second, once a computer code has been generated 
t o  solve a problem by means of t h i s  algorithm, solutions can be generated f a i r l y  
eas i ly  and quickly no matter how complicated or  nonlinear the  problem is .  
fore, recognizing both the d i f f i c u l t i e s  of implementation and the high probabili ty 
of success, f’uture uses of t h i s  algorithm should be made i n  areas where the  resu l t -  
ing da ta  will be extremely useful or i n  areas where the  data  are currently 
essent ia l ly  unattainable. 

F i r s t ,  it i s  a lengthy 
Although t h i s  

There- 

In  t ra jec tory  analysis, three such study areas present themselves. The 
f irst  i s  a program t o  choose simultaneously both the terminal hyperbolic excess 
speeds and the low-thrust t ra jec tory  which minimizes mass on ear th  orb i t  for  a 
given s e t  of vehicle parameters. Th i s  area i s  currently the most time-consuming 
process i n  the analysis of hybrid-thrust missions. The approach would be t o  
incorporate the currently used approximations and matching l a w s  i n t o  the body of 
the hel iocentr ic  algorithm. 

The second i s  a program t o  optimize t r a j ec to r i e s  i n  a time-varying, n-body, 
gravi ta t ional  f ie ld .  
checking out currently used matching c r i t e r i a ,  there are very l i t t l e  da ta  available 
which have been achieved through a unified approach. The questions a r i s ing  for  the 
case of close approaches t o  Jupi te r  are cer ta inly worth answering, and the program 
would a l so  offer a convenient means t o  study the guidance problem of low-thrust 
as cent and des cent. 

While the usefulness of such a program might be l imited t o  

The th i rd  i s  a program fo r  minimum-total veloci ty  increment, multiple- 
impulse, high-thrust t ra jec tor ies .  
t ransfers  are  available.  
became available it would a l so  be very u s e m  i n  demonstrating both the reduction 
of t o t a l  energy requirements needed fo r  high-thrust missions and, probably more 
s ignif icant ly ,  the broadening of the launch Windows available fo r  these missions. 

A t  present, only a f e w  examples of such 
It i s  a l so  extremely l i k e l y  that  once these data  
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SECTION I1 

INTRODUCTION 

Objectives 

The purpose of t h i s  thirteen-month study w a s  t o  develop a computer algorithm 
t o  be used i n  optimizing space t r a j ec to r i e s  which are performed by power- 
limited ( low-acceleration, e l e c t r i c )  propulsion systems. 
August 1966, i s  an extension t o  the  or ig ina l  Contract NAS2-2928, "Study of 
Trajectories and Upper Stage Propulsion Systems f o r  Exploration of the  Solar 
System", which was i n i t i a t e d  i n  July 1965. The basic objective of the  study 
extension w a s  t o  develop user-oriented computer programs f o r  solving selected 
t ra jec tory  and system optimization problems peculiar t o  low-acceleration, constant- 
th rus t  interplanetary vehicles. 
program capable of minimizing the  i n i t i a l  mass of a vehicle thrust ing within 
planet ' s  sphere of influence using low acceleration so le ly  or i n  combination 
with high acceleration. 

This study, begun i n  

A secondary objective was t o  develop a computer 
t he  

General Approach 

The general  approach t o  the  hel iocentr ic  t ra jec tory  and system optimization 
problems was to ,  first, derive the  system of d i f f e r e n t i a l  equations describing 
each optimization problem by the  calculus of variations,  and second, solve these 
systems of equations by the  implici t  f ini te-difference Newton-Raphson algorithm. 
Rather than develop complete individual computer programs f o r  t he  severa l  spec ia l  
problems, a series of generalized subroutines w a s  prepared which would 
implement the  log ica l  and algebraic aspects of the  Newton-Raphson algorithm. 
These subroutines represent t ha t  par t  of the overa l l  programming task which i s  
common t o  a l l  the  t r a j ec to ry  problems. 

The approach t o  the  high plus low-acceleration problem w a s  t o  develop the 
computer programs for the  hel iocentr ic  and planetocentric phases independent of 
each other; the two phases were re la ted  i n  a separate overal l  mass 
minimization program which accounts f o r  the condition of t he  vehicle a t  the 
assumed t r ans i t i on  between the planetary and hel iocentr ic  gravi ta t ional  f i e lds .  
The consequent computer programs f o r  each phase provide resu l t s  for input 
t o  the  vehicle mass minimization program ra ther  than attempt t o  in tegra te  each 
program asa subroutine i n t o  a system mass computation program. 
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Study Scope 

During the performance of the study it became evident that some of the 
heliocentric trajectory and system optimization problems originally scheduled 
were not compatible with the then-existing numerical techniques in conjunction 
with the requirements of computing time and machine storage capacity. The list 
of tasks presented in UARL Reports E-910352-10 and F-910352-11 was subsequently 
reduced in scope and number to result in the following list. 
specified or implied, the listed tasks are all for constant exhaust velocity and 
fixed transfer time, They incorporate hyperbolic excess speeds at the boundaries 
and maximization of payload fraction. 

Unless otherwise 

I. 

11. 

111. 

I V  . 

Task 

Planet-to-planet rendezvous, internal discrimination between single 
and double coast periods, constant power 

One-way planetary flyby, single or double coast, final hyperbolic 
velocity open, constant power 

Tasks I and I1 with power a function of radial heliocentric position 
or of time 

Round-trip planetary stopover, optimum distribution of outbound 
and inbound leg transfer times, variable exhaust velocity, constant power. 

I is a planet-to-planet transfer with given hyperbolic excess speeds on 
the terminals. The computer program is to be capable of computing the optimum 
trajectory and maximum payload fraction simultaneously for either one or two 
coasting arcs. 
hyperbolic excess speed at departure and a single final coast period. 

The second task is a one-way planetary flyby with a specified 

Both of the foregoing tasks are analyzed for both constant power and variable 
power. 
system output as a function of heliocentric position (i.e., a solar power system) 
or as a function of time. 

The variable-power case is represented by an equation giving the power 

The find. task is analyzed under the variable-thrust operating mode rather 
than for constant thrust. The hyperbolic excess speeds at the terminals of the 
outbound leg are specified, and either the speeds at departure and arrival or 
the speed at departure only is fixed. 
as is the Earth departure date. 

The stay time at the planet is constant 

The studies of planetocentric operations, i.e., thrusting of the electric propul- 
sion system within the sphere of influence (with or  without high thrust), attempt to 
evaluate the system implications and consequences of such thrusting on the dynamic 
condition of the vehicle at the planet's activity sphere or on the circular parking 
orbit. The purpose is to develop computer programs which calculate the performance 
of the vehicle within the planet's sphere of influence such that this performance can 
be related to and combined with the heliocentric trajectory. 
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The discussions of the  progranvning e f f o r t  and of the  r e su l t i ng  computer 
programs f o r  the  hel iocentr ic  t r a j ec to ry  problems are presented i n  Section 111. 
Also included is  a discussion of t he  r e l a t ed  user 's  manual which is a separate 
document intended t o  accompany the  decks themselves. 
numerical r e su l t s ,  of t h e  combined high- and low-acceleration thrus t ing  mode 
within a planet ' s  a c t i v i t y  sphere i s  presented i n  Section IV.  

An analysis,  based on 

Section V discusses the results of the planetocentric s p i r a l  analysis  and 
suggests procedures f o r  optimizing an a l l - e l e c t r i c  vehicle system (no high th rus t ) .  
Section V l  presents an ana ly t ic  treatment which j u s t i f i e s  the use of hyperbolic 
ve loc i t ies  at planet-centered i n f i n i t y  and the  assumption of negl igible  planeto- 
cent r ic  vehicle displacement a t  the  start  of the  hel iocentr ic  t ra jec tory .  Both 
the  problems of low thrus t  only and of high-low th rus t  i n  combination are 
discussed. 

Certain improvements i n  the  previously developed single-coast, rendezvous 
t ra jec tory  program are de ta i led  i n  Section VI1 along with a developed program f o r  
minimizing the  mass of a combined high-low accelerat ion vehicle. 
technical  discussion, Section VIII, gives the  var ia t iona l  formulations of t h e  
severa l  hel iocentr ic ,  system-trajectory optimization problems. 

The f ina l  
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SECTION I11 

GENERALIZED TRAJECTORY OPTIMIZATION COMPUTER PROGRAM 

This sect ion presents an overa l l  picture  of the  three heliocentric computer 
programs worked on under t h i s  contract .  
program are l a i d  out, and, second, a general discussion of the analysis ana usage 
of the  decks is given, The detai led user ' s  information f o r  those decks which have 
been brought t o  a successful operating condition 
t h i s  report .  

F i r s t ,  the  basic capabi l i t i es  of each 

a r e  presented i n  Volume I11 of 

Basic Program Capabili t ies 

Program 1 - General Constant-Power Rendezvous o r  Flybz 

Boundary conditions a r e  given by the posi t ion and veloci ty  of some body i n  a 
given Keplerian o rb i t .  I n i t i a l  and final hyperbolic excess speeds are specified.  
For the flyby mode, however, f i n a l  veloci ty  is  l e f t  open. Multiple-coast arcs  a re  
accounted f o r  except t h a t  terminal coasts may occur only a t  the end of a flyby. 
The powerplant specif ic  mass, g ,  is specif ied as i s  the  thrustor  eff ic iency 
parameter, d. 
pw, may be specif ied or optimized i n  any combination. 
deck i n  e i t h e r  the three-dimensional or two-dimensional mode i s  included. 

Specific impulse, I,, (or exhaust veloci ty)  and powerplant f rac t ion ,  
An option of running the  

Program 2 - General Variable-Power Rendezvous or Flyby 

This program has the same charac te r i s t ics  as Program 1 except t h a t  the power 
i n  the exhaust beam may be specified e i the r  as a function of so la r  radius or as a 
function of time. 

Program 3 - Variable-I,. Round Trip. 

Launch and return dates are given, and s t ay  time a t  the t a rge t  planet i s  
specified. Also specified a re  the hyperbolic excess speeds a t  the beginning and 
end of each leg.  The second, or return,  l e g  may be considered a flyby. 

Numerical and Programming Analyses 

A t  the  hear t  of these three heliocentric,  low-thrust, computer decks i s  the  
f ini te-difference Newton-Raphson algorithm (Ref. 111-1) f o r  solving nonlinear, 
.two-point boundary value problems. This algorithm operates by reducing the 
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boundary value problem t o  a sequence of large,  but spec ia l ly  structured, algebraic 
systems of l i n e a r  equations. Mathematically, t h i s  reduction can be viewed two ways. 
F i r s t ,  at each of many mesh points chosen along the independent variable axis 
between the boundary points,  the nonlinear, ordinary d i f f e r e n t i a l  equations 
describing the problem may be wri t ten as algebraic equations by subs t i tu t ing  
difference quotients f o r  the der ivat ive terms. 
w i l l ,  i n  general, be nonlinear i n  the unknown dependent variables and thus w i l l  
form a nonlinear system of equations. The Newton-Raphson i t e r a t i o n  can be appliea 
t o  t h i s  system. Second, however, the e n t i r e  unknown solut ion of the d i f f e r e n t i a l  
equations can be considered as a point i n  function space. The generalized Newton- 
Raphson i t e r a t ion  can be applied d i r ec t ly  to  the  nonlinear d i f f e r e n t i a l  equations 
resul t ing i n  a system of l i n e a r  d i f f e r e n t i a l  equations. In t h i s  system the  unknown 
variables a r e  the corrections t o  be made t o  an approximate solut ion which appears 
as a known function on the r igh t  hand s ide  of the  same system. The standard numerical 
technique f o r  solving systems of l i n e a r  two-point boundary equations i s  t o  subs t i tu te  
difference quotients f o r  the  derivatives and solve the resu l t ing  system of l i nea r  
algebraic equations. 

Each of these algebraic equations 

When viewed the second way, the f a c t  that the l i n e a r  system w i l l  be special ly  
s t ructured becomes self-evident.  The matrices involved i n  solving ordinary, 
l inear ,  boundary value problems a re  of block t r idiagonal  form. 
re la t ionship t o  the matrices which a r i s e  i n  the solut ion of l i n e a r  p a r t i a l  
d i f f e r e n t i a l  equations, which have been extensively studied (Ref. 111-2). 
previous experience, they a r e  known t o  be very well conditioned when solved by a 
direct-elimination method known as the block Thomas algorithm. This method is  a 
labor-saving and convenient way of applying Gauss elimination t o  a block t r idiagonal  
sys tem . 

They bear close 

From 

Returning to  the f ini te-difference Newton-Raphson algorithm i t s e l f ,  the 

Given an i n i t i a l  
theore t ica l  studies (Ref. 111-3) and computational experience both show t h a t ,  
through i ts  use, solutions a re  very quickly and eas i ly  obtained. 
approximation t o  the solut ion (to be discussed l a t e r ) ,  usually no more than 5 t o  7 
terms of the sequence of l i nea r  problems must be obtained. The usual terminology 
i s  t h a t  each sequential  solution of the l i nea r  system is a Newton-Raphson i te ra t ion .  
Also, the f a c t  t h a t  no log ica l  decisions have t o  be made during the course of the 
i t e r a t ion  i s  of no small importance t o  the success of the method. 
concerned only with providing the  algorithm with an i n i t i a l  approximation or 
s t a r t i n g  solut ion which is  within the domain of convergence of the solution and 
may completely ignore the workings of the  Newton i t e r a t ion  i t s e l f .  

The user is 

The computer analyst ,  however, can hardly ignore the Newton i t e r a t ion .  
the analysis and programming of the algorithm, there  a r e  two major problem areas .  
F i r s t  i s  the construction of an e f f i c i e n t  means of generating the vast  numbers of 
coeff ic ients  which en ter  in to  the l i n e a r  system. This p a r t  of the job is ,  of 
course, dependent on the par t icu lar  equations being used f o r  a given problem and 

In  

111-2 



F-910352-13 

must be faced f o r  each new problem o r  a l t e r ed  f o r  each new modification. Second is 
the evaluation of the  necessary formulas of l i n e a r  algebra involving these coef- 
f i c i e n t s  i n  the  solut ion of the large system of l i nea r  equations at each i t e r a t ion .  

Due t o  the  magnitude of t he  second problem, complete advantage must be taken 
of any s t ructure  of the system which provides f o r  t he  reduction of  computations. 
In  ce r t a in  areas, the ordering of the calculations must be analyzed i n  order t o  
reduce rounding e r ro r s ,  and, i n  at  l e a s t  one calculation, double-precision 
ari thmetic must be used. 
computer storage that are usually unavailable, and the  logic  of using secondary 
storage devices must be analyzed, solved, and coded. I n i t i a l l y ,  the  problem of 
creat ing a flexible means of varying the mesh point spacing was envisioned. 
whole second problem area  i s  algebraic and log ica l  i n  nature and does not depend 
on the equations of any pa r t i cu la r  problem. 
subroutines have been developed which may be used f o r  a grea t  var ie ty  of tra- 
jectory problems. 

The problems of current i n t e r e s t  require amunts  of 

This 

It i s  i n  the area tha t  generalized 

The f i r s t  attempt t o  build such a generalized s e t  of subroutines under the 
current contract  involved the use of successive overrelaxation (SOR) as the 
technique used to  solve the  l i n e a r  system. 
spacing, equations containing first derivative terms, and the use of Cowell’s 
formula f o r  the second derivative terms, destroyed the  block t r idiagonal  form and 
increased the  amount of core storage needed. 
circumvent these d i f f i c u l t i e s .  However, SOR i t s e l f  is an i t e r a t i v e  method, and it 
w a s  discovered that the  l i n e a r  systems which a r i s e  from optimization problems a re  
e i the r  very slowly convergent or ac tua l ly  divergent under SOR. The problem seems 
t o  be re la ted  t o  the f a c t  that  both a s e t  of d i f f e r e n t i a l  equations and t h e i r  
adjoints  appear i n  the system. After the discovery that SOR would not be 
sa t i s fac tory ,  some reduction i n  the  scope of t h e  project  had t o  be made. In  terms 
of the algorithm, this  reduction was achieved by abandoning the inclusion of 
variable mesh spacing and the use of Cowell’s formula. These changes restored the 
block t r idiagonal  form of the system which made possible the use of the noniterative 
block Thomas algorithm and simplified the use of secondary storage devices. The 
necessity of coding the secondary storage for both the IBM 7094 DCS disk storage 
and the  UNIVAC 1108 drum storage also created some problems. 

The planned inclusion of variable mesh 

SOR seemed idea l ly  su i ted  t o  

A s ign i f icant  addi t ion to  the f ini te-difference Newton-Raphson algorithm made 
i n  t h i s  study i s  the  inclusion of the capabi l i ty  t o  solve f o r  the optimum values 
of an a rb i t r a ry  s e t  of parameters simultaneously w i t h  the d i f f e r e n t i a l  equations of 
the t ra jec tory .  This capabi l i ty  i s  b u i l t  in to  the  generalized subroutines f o r  the  
algorithm. Although there i s  an increase i n  the number of computations t o  be 
performed, the process i s  much more sa t i s f ac to ry  than a search and a l so  avoids the 
pitfalls  of using approximation and extrapolation techniques based on known data. 
Indeed, it has been discovered, f o r  example, that the problem of optimizing a 
constant-power, constant-exhaust veloci ty  t r a j ec to ry  from Earth t o  Mercury and 
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simultaneously optimizing the  ac tua l  value of the  exhaust ve loc i ty  not only results 
i n  a somewhat d i f fe ren t  value of exhaust velocity than expected, but a l so  turns 
out t o  have a la rger  domain of convergence. 
option t o  optimize e i the r  o r  both the  exhaust veloci ty  and the powerplant f r ac t ion  
i s  avai lable .  Also, the round-trip, variable-exhaust-velocity deck uses t h i s  same 
capabi l i ty  t o  optimize the  d i s t r ibu t ion  of l e g  times. 

I n  the constant-thrust decks, the 

S tar t ing  Solutions and Tracking 

Other than the  input/output routines,  the other s ign i f icant  aspect i n  the 

This area i s  of s ign i f icant  importance and i n t e r e s t  t o  the users of 
programs is the computation and manipulation of the i n i t i a l  approximation t o  the 
solution. 
these programs as it is i n  th i s  area where the user must use h i s  understanding of 
the problem and ingenuity i n  order t o  e f fec t ive ly  use the program. 

It is  appropriate t o  re turn f o r  a moment t o  the concept of viewing both the 
functions which are the solut ion of the d i f f e r e n t i a l  equations and the values 
which a re  the  solut ion of the parameters t o  be optimized a l l  as a point i n  some 
function space. Under f a i r l y  general conditions, it is known t h a t  t he  Newton 
i t e r a t ion  w i l l  converge t o  the solut ion point from some domain of neighboring 
points. 
most prac t i ca l  problems, too great  t o  be ju s t i f i ed .  
a t  obtaining i n i t i a l  guesses has been taken w i t h  considerable success. 

However, the computational work required t o  ident i fy  th i s  domain i s ,  f o r  
Instead, a heur i s t ic  approach 

The first heur i s t ic  pr inciple  is  tha t  a simple function which is a solution 

I n  
of the d i f f e ren t i a l  equations but which does ns t  s a t i s f y  the  boundary conditions of 
i n t e re s t  is  very of ten i n  the domain of convergence of the desired solution. 
t ra jec tory  analysis,  the two-impulse b a l l i s t i c  t ra jec tory  immediately comes t o  
mind as a candidate. 
poor choice as a s t a r t i n g  solut ion i n  cases where multiple coast periods turn  out 
t o  be optimum. 
t o  generate, but a l so  highly sat isfactory.  Very br ie f ly ,  the c i r c l e  start is  the 
c i r cu la r  coasting t r a j ec to ry  which leaves the  launch longitude a t  time zero and 
a r r ives  a t  the longitude of the t a rge t  planet a t  the  specified time. Thus, t he  
radius o f  the  c i r c l e - s t a r t  t r a j ec to ry  is  determined by the cen t r a l  angle traversed 
and the t r i p  time. Further f l e x i b i l i t y  f o r  more complex t r a j ec to r i e s  i s  available 
by increasing the  cen t r a l  angle by multiples of 360 degrees. S t r i c t l y  speaking, 
the c i r c l e  start is  a solut ion only of the variable-I, ,  equations, since any a rc  
with no thrusted period w i l l  be singular for the constant-I,, equations. 
the c i r c l e  start i s  used t o  obtain a variable-I,,  t ra jec tory ,  and th i s  t r a j ec to ry  i s  
then used as a s t a r t i n g  solut ion f o r  the  constant Isp trajectory.  

However, the b a l l i s t i c  t r a j ec to ry  would be an extremely 

For low-thrust work, the c i r c l e  start i s  not only extremely simple 

Thus, 

The second heur i s t ic  pr inciple  used is  based on the f a c t  t h a t  t h e  t r a j ec to r i e s  
.vary continuously with respect t o  both the boundary conditions and the specified 
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system parameters. Thus, once a t r a j ec to ry  has been obtained, it may be used as a 
s t a r t i n g  solut ion f o r  a t r a j ec to ry  which d i f f e r s  somewhat i n  e i t h e r  boundary 
conditions o r  system parameters. This procedure i s  cal led tracking. The important 
point i s  not the magnitude of the change of the  input variables,  but the  magnitude 
and nonlinearity of the changes i n  the solut ion variables.  Thus, f o r  instance, 
it may be possible t o  change the a r r i v a l  date  of an Earth-Jupiter t r a j ec to ry  by 
twenty or t h i r t y  days and s t i l l  converge t o  a solution, but a change i n  the a r r i v a l  
date of an Earth-Mercury t r a j ec to ry  may be l imited t o  one or  two days. 

Tracking on hyperbolic excess speeds a t  launch and a r r i v a l  can be par t icu lar ly  
troublesome. The bes t  opportunities f o r  high-thrust and low-thrust t r a j ec to r i e s  
occur at d i f f e ren t  dates. Thus, when the hyperbolic excess speeds a r e  varied f o r  
a f ixed t r i p ,  the nature of  the t ra jec tory  may change profoundly. 
behavior i s  especial ly  t r u e  f o r  multiple-coast t r i p s ,  unexpected var ia t ions have 
occurred even i n  the  simplest of cases. 
tracking increments have t o  be used i n  d i f fe ren t  cases but a l so  the  number and 
posi t ion of the  coasting periods must be monitored closely. 

While t h i s  

The net r e s u l t  i s  t h a t  not only do d i f f e ren t  

A similar s i tua t ion  has been uncovered i n  the optimization of the exhaust 
velocity.  The curve of optimum I,, plot ted against  powerplant spec i f ic  mass, QN, 

fo r  a given t r i p ,  starts off  w i t h  a steep i n i t i a l  downward slope f o r  s m a l l  values 
of Q .  Then the function usual ly  turns f a i r l y  sharply and exhibits a f a i r l y  
gentle downslope u n t i l  some maximum % is reached f o r  which it i s  no longer 
possible t o  make the t r i p .  Again, care must be taken t o  use tracking steps,  i n  
CYw, which a re  small enough i n  the steep region. 

A fur ther  var ia t ion of tracking is  available on the  c i r c l e  start. It has 
already been noted that the  c i r c l e  start is a solut ion o f  the d i f f e r e n t i a l  
equations which does not s a t i s f y  the boundary conditions of i n t e re s t .  However, 
the c i r c l e  start does s a t i s f y  i ts  own c i r cu la r  boundary conditions. Thus, by 
par t i t ion ing  the difference i n  the boundary values between the c i r c l e  start and 
the final t r a j ec to ry  i n  small increments, almost any variable-I,,  t ra jec tory  can 
be reached. This procedure is  available i n  the programs and is known as an i t e r a t ed  
c i r c l e  start.  
required. 

It is especial ly  useful when cent ra l  angles of over 360 degrees are 

General Program Operation 

In  summary then, a typ ica l  computer run goes as follows. One, the c i r c l e  
start t ra jec tory  w i l l  be s e t  up. Two, a solut ion of a variable-I,,  t ra jec tory  
with the specif ied hyperbolic excess speeds and proper boundary conditions is  
obtained. 
on the c i r c l e  start boundary conditions w i l l  most always suff ice .  Three, the  
corresponding constant-thrust t ra jec tory  i s  obtained. This is  probably the  most 

If d i f f i c u l t y  is encountered at  t h i s  point ,  the  use of more i te ra t ions  
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d i f f i c u l t  s tep  of the process. 
does not work. 

Very l i t t l e  can be done d i r e c t l y  i f  t h i s  s tep  

Remedial procedures which could be u t i l i zed  a r e  as follows. The parameters 

The r a t i o s  of  t h e  estimated constant-thrust  J t o  variable-thrust  J, o r  
of the  constant-thrust t r i p  can be changed, especial ly  %, which may be made 
smaller. 
of estimated thrusted time t o  t o t a l  t ransfer  time may be changed. The mode of 
simultaneously solving f o r  I,, and & along with the t ra jec tory  is more l i k e l y  
t o  succeed than t o  specify these quant i t ies .  However, i f  a l l  e l s e  fails, tracking 
t o t h e d e s i r e d  constant-thrust t r a j ec to ry  from another constant-thrust t r a j ec to ry  
w i l l  have t o  be employed. Four, assuming the constant-thrust  t ra jec tory  is reached, 
another constant-thrust t r a j ec to ry  may be obtained by tracking. If t h i s  s tep fails ,  
usually a decrease i n  the incremental change made i n  the  input variables w i l l  
achieve the desired r e su l t .  

An example of the i n i t i a l  resu l t s  obtained from the program is  displayed i n  
Figs. 111-1 and 111-2 f o r  a 320-day constant power, Mars-to-Earth rendezvous i n  
1980. The first f igure i l l u s t r a t e s  the position-time h is tory  of  t he  two-coast 
t ra jec tory  and the times a t  which the thrus t  is turned off  o r  on. Although the 
payload f rac t ion  has not been maximized with respect t o  specif ic  impulse and 
powerplant f rac t ion ,  the  i n i t i a l  guesses made within the program are very close t o  
optimum. For t h i s  t r i p  it is  estimated by other means that the optimum spec i f ic  
impulse and powerplant f r ac t ion  should be 20,400 sec and O.@, respectively,  with 
a resu l t ing  maximum payload f rac t ion  of about 0.81. The powerplant specif ic  mass 
of 1 kg/kw was  chosen merely t o  assure convergence f o r  the  given example. 

The magnitude of the primer vector i s  p lo t ted  i n  Fig. 111-2 t o  indicate the 
regions of th rus t ing  and coasting and t h e i r  points of occurrence, as expected, i n  
r e l a t ion  t o  the shape of the curve. 
t ra jec tory ,  the primer vectors are equal a t  the  i n i t i a t i o n  and termination of a 
coast  period. 

Note that, as required f o r  an optimum 

Two warnings i n  the use of these programs must be noted. F i r s t ,  they a r e  new 
programs with l imited computing experience. 
checked, however a l l  va l id  combinations of options have not.  Therefore, it is  
possible t h a t  some program er rors  may remain. 
these programs solve equations which a r e  intractable  ana ly t ica l ly  and for which 
the nature of t h e i r  solut ion i s  not well known. Thus, cases should arise where 
new knowledge concerning the basic form of the t r a j ec to r i e s  w i l l  be gained. I n  
t h i s  respect it is  impossible merely t o  use these programs as missionanalysis  
tools  without concurrently attempting t o  gain insight  i n to  the nature of the 
t r a j ec to r i e s  being computed. 

A l l  individual options have been 

Second, and more fundamental, 
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SECTION N 

HIGH-LOW THRUST PLANETOCENTRIC OPERATIONS 

Introduction 

The usual boundary conditions which are specified f o r  low-thrust heliocentric 
t ra jec tory  analysis consider the departure and a r r i v a l  planets as massless points 
moving through heliocentric space with known ephemeral motions. The in te r -  
planetary vehicle i s  assumed e i the r  t o  have the  p lane t ' s  velocity (planetocentric 
hyperbolic excess velocity equal t o  zero) or t o  have a heliocentric veloci ty  which 
exceeds the p lane t ' s  velocity by a known, required planetocentric hyperbolic excess 
veloc i t y  . 

Also, it i s  assumed that the planetocentric hyperbolic excess veloci ty  i s  
imparted t o  the  vehicle by a high-thrust propulsion system (to reduce mass require- 
ments and planetocentric maneuver t i m e )  and that after high-thrust burnout the 
vehicle coasts on a hyperbolic t ra jec tory  to t he  planet ' s  sphere of influence. 
Upon reaching t h e  sphere of influence, a coordinate transformation is  made and the 
heliocentric low-thrust mission phase is in i t i a t ed .  The sequence of events is  
reversed for planetary capture. Although t h i s  operation i s  labeled as a mixed 
high-low thrus t  mission mode, the high-thrust and the low-thrust operational modes 
are completely uncoupled and are "patched" a t  the  planetocentric sphere of influence 
a t  departure or a r r iva l .  I n  many cases the planetocentric operational phase is 
completely neglected except f o r  the  f a c t  that a required hyperbolic excess speea 
is  specified a t  i n i t i a t i o n  and conclusion of the  heliocentric t ra jectory.  How 
t h i s  excess speed i s  produced i s  usually not considered i n  low-thrust heliocentric 
mission analyses. 

An in te res t ing  problem arises when the vehicle is  required t o  i n i t i a t e  low- 
thrus t  propulsion within the planetocentric f i e l d  and t o  continue it through the 
sphere of influence. In  t h i s  operational mode, the high-low mix is coupled 
throughout the en t i r e  mission. Low-thrust propulsion may begin a t  any time from 
high-thrust termination up to the  time the vehicle passes through the sphere of 
influence; likewise, high-thrust vehicle propulsion parameters s ignif icant ly  a f fec t  
the  vehicle 's  condition upon a r r iva l  at  the sphere of influence. Once the  low- 
thrus t  system i s  assumed to operate within the  planetocentric ac t iv i ty  sphere, the 
s t ructure  of mixed high- low-thrust operational mode i s  somewhat a l te red  from the 
s i tua t ion  i n  which the  high- and low-thrust systems are uncoupled. 



When mixed thrus t ing  occurs within the  planetocentric sphere of influence, 
the appl icat ion of the  t ra jec tory  data t o  the  mission analysis may take one of 
two approaches, one a f fec t ing  hel iocentr ic  operations and the other a f fec t ing  
planetocentric operations. The former requires that, f o r  a given mission with 
specif ied high-thrus t hyperbolic excess speeds f o r  departure and/or capture, the 
vehicle a r r ives  a t  the sphere of  influence with greater  hyperbolic excess speed. 
This d i r ec t s  t h a t  the hel iocentr ic  phase have new veloci ty  boundary conditions; 
thus, the  hel iocentr ic  t r a j ec to ry  may require shor te r  t r i p  time or smaller pro- 
pulsion requirements. 
specified,  including the  veloci ty  boundary conditions. Therefore, the high-thrust  
energy requirement is reduced, a f ac to r  which may decrease i n i t i a l  o r b i t a l  mass 
and/or equivalently increase a r r i v a l  payload. 
the method t o  be used i n  t h i s  study since it is  convenient t o  specify an optimal 
heliocentric low-thrust t ra jec tory  and then incorporate the e f f ec t  of the 
planetocentric departure/capture operation in to  the spec i f ic  mission analysis.  
inclusion of the high-low-thrust planetocentric operation in to  interplanetary 
low-thrust mission analysis creates a more sophisticated model of the sequence of 
events than is  generally the case, and hence, i t s  predictions a re  more representative 
of t he  ac tua l  mission modes under examination. 

The second approach requires t h a t  the  hel iocentr ic  t ra jec tory  be 

This second approach was chosen as 

The 

Study Approach 

Since the planetary parking o rb i t  and the planetocentric a c t i v i t y  sphere are 
known f o r  any planet under consideration, the planetocentric thrust ing t ra jec tory  
i s  calculated by an incremental integrat ion of the  f irst  integrals  of the vehicle 
equation of motion i n  d i f f e r e n t i a l  form (Appendix B).  High-thrust termination i s  
reached when the desired high-thrust hyperbolic excess speed is  acquired by the 
vehicle. 
impulse is experienced ( low- thrus t  propulsion ini t ia ted) ;  although a l l  dependent 
variables remain continuous , the  independent variable 7 ( t h e  instantaneous burn 
time) is  s e t  equal to  zero. 
planetocentric a c t i v i t y  sphere is reached. 

A t  t h i s  time, a discontinuity i n  vehicle th rus t  accelerat ion and specif ic  

The vehicle 's  t ra jec tory  is  calculated u n t i l  the 

For mixed-thrust planetocentric operations the following nondimensional 
constants a r e  given. 

- High-Thrust Hyperbolic Excess Speed 
vmH 

oiL - I n i t i a l  Low-Thrust Vehicle Acceleration 

CL - Low-Thrust Exhaust Velocity 

of - I n i t i a l  High-Thrust Vehicle Acceleration 
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CH - High-Thrust Exhaust Velocity 

c* - Radius of Sphere of Influence 

These constants a r e  used as input values fo r  the  exis t ing computer programs. 
departure operation, Vz 
of high- and low-acceleration propulsion systems a t  a r r i v a l  at the sphere of influence) 
m y  be an input i n  place of V%. 
numerical Newton-Raphson technique i s  employed on the variable V,, unti l  the 
hyperbolic excess speed at  the sphere of influence ( i . e . ,  V&) i s  within a desired 
tolerance of the input value. 

For the 
( the  hyperbolic excess speed achieved by the combination 

I f  Vz i s  an input t o  the departure program, a 

For the capture operation, the computer program chooses an i n i t i a l  value of 
the f inal  thrus t  acceleration aBo. 
ac t s  upon the i n i t i a l  t h rus t  acceleration, ol, u n t i l  ol is within a specified 
tolerance of the input value. This i t e r a t i o n  technique is employed on both the 
high- and low-thrust i n i t i a l  t h rus t  accelerations.  However, once the i t e r a t i o n  
is complete, the i s  not pre-assigned; it is  a dependent variable which i s  
determined by the  input vehicle parameters and the specified gravi ta t ional  f i e l d .  

A modified Newton-Raphson i t e r a t i v e  technique 

With the avai lable  programs, the capture and departure t r a j ec to r i e s  may be 
computed f o r  any planetocentric gravi ta t ional  f i e l d  ( spec i f ic  sphere-of- influence 
radius),  i n i t i a l  parking o r b i t ,  and combination of high- and low-thrust vehicle 
parameters. 

The basic assumptions made i n  the analysis are: 

1. The departure (capture) parking o r b i t  is c i rcu lar  and a t  1.1 planetary 
r a d i i  from the gravi ta t iona l  center. 

2. The vehicle t h rus t  acceleration is  i n  the d i rec t ion  of the  vehicle 's  
instantaneous veloci ty .  

3. The departure (capture) t ra jec tory  is i n  the plane of the parking o r b i t .  

4. The vehicle propulsive th rus t  and propulsive specif ic  impulse of both 
high- and low-thrust systems are constant. 

5. The radius of the planetocentric a c t i v i t y  sphere is  determined as the 
product of the p l ane t ' s  mean o r b i t a l  hel iocentr ic  radius and the r a t i o  
of the p lane t ' s  m a s s  t o  the so l a r  mass raised t o  the  0.4 power. 

6. The first propulsion system employed upon departure from the  parking 
o r b i t  i s  the high-thrust system; the first propulsion system employed 
upon capture i s  the low-thrust system. 
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7. Immediately upon completion of the high-thrust termination (low-thrust 
termination), low-thrust propulsion (high-thrust  propulsion) i s  employed 
u n t i l  the  sphere of influence (parking o rb i t )  i s  reached f o r  departure 
(capture) operations. 

8.  All variables have been nondimensionalized with respect t o  the parking 
o r b i t  constants, i . e . ,  t he  c i r cu la r  o r b i t  speed, v c p o ,  the c i rcu lar  o r b i t  
radius, rpo , and the loca l  gravi ta t ional  acceleration, gp, . 

E l l i p t i c  Parking Orbits 

The present formulation of the computer programs f o r  planetary departure 
and capture operational modes considers the parking o r b i t  t o  be c i rcu lar .  
introduction of nonzero eccent r ic i ty  in to  the parking o r b i t  poses the  problem 
that other variables must be introduced into the  problem formulation. I f  the 
parking o rb i t  is e l l i p t i c ,  the  eccentr ic i ty ,  perigee distance, and the t rue  
anomaly must be introduced unless only apsidal  departure or capture is  considered. 
Even with apsidal  i n i t i a t i o n  or termination, the i n i t i a l  boundary conditions must 
be completely redefined t o  include the following three options. 

The 

Option 1: Circular parking o r b i t  of radius, ro 

Option 2: E l l i p t i c  parking o rb i t  of perigee radius, r,; departure 
(capture) a t  perigee or apogee 

Option 3: E l l i p t i c  parking o r b i t  of apogee radius,  r,; departure 
(capture) a t  perigee or apogee 

Hence, from a simplified approach of one s e t  of i n i t i a l  conditions, the programs 
must be redefined t o  handle three basic options with four suboptions. 

The labor  involved i n  accomplishing t h i s  task seems unwarranted considering 
that the basic motivation is t o  determine the  e f f ec t  of both high and low thrust ing 
within the planetocentric sphere and not t o  perform a detai led analysis of a l l  
possible var ia t ions and a l te rna t ives .  The introduction of new variables would tend 
t o  complicate and obscure a basic understanding of the  problem. 

Discussion of Results 

The resu l t s  of t h i s  study are  presented i n  two re la ted  discussions. The 
first deals with mixed-thrust planetocentric operations about the planets Earth, 
Mercury, and Jupi ter .  Here, a general analysis is made t o  show the e f f ec t  of 
variations i n  planetary mass on the per t inent  t ra jec tory  parameters derived from 
the study. The second discussion deals with mixed-thrust Earth operations only. 
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Planetocentric Operations 

An examination of the departure and capture operational modes for Earth, Mercury, 
and Jupiter was made. 
latter two because they represent the extremes in planetary mass. 

The first was chosen because it is the most iqortant, the 

The high-thrust propulsion system was chosen to be either a chemical system 
(Isp = 430 sec) or a solid-core nuclear system (Isp = 800 sec). 
propulsion system is defined by a constant thrust-acceleration level of either lo-", 

sec"). The initial thrust acceleration of the high-thrust system was chosen to 
minimize the weight of the high-thrust stage, using the results of Ref. IV-1. 
of Ref. IV-1 were approximated as linear functions of hyperbolic excess speed at high- 
thrust termination and are presented in Figs. IV-1 and IV-2. 
parking orbits used in Ref. IV-1 are different than those assumed here, the values of 
initial thrust-to-weight ratio are regarded as typical of the two types of high- 
thrust propulsion systems. 

The low-thrust 

or lo-* of the Earth's surface gravitational acceleration (9.79006 x ld3 km/ 

The data 

Although the planetary 

The definitive characteristics of the three planets and their parking orbits 
are summarized in Table IV-1. 
the local gravitational acceleration at the parking orbit about Mercury is of the 
order of l / 3  that for Earth, while that about Jupiter is of the order of 2.5 that 
of Earth. 
the parking orbit radius for Jupiter, Earth, and Mercury, respectively. Since all 
operational modes begin (or terminate, f o r  capture) at a nondimensio,ral radius of 
1.0, there is considerable increase in thrusting time available for the low-thrust 
system when comparing the Jupiter operations with those about Mercury. 

Although the planets may vary considerably in mass, 

The radius of the sphere of influence is 625.48, 131.68, and 40.56 times 

The increase in hy-perbolic excess speed due to low acceleration within the 
sphere of influence of Earth, Mercury, and Jupiter is shown in Figs. IV-3, IV-4, 
and IV-5, respectively. For a given hyperbolic excess speed at high-thrust termina- 
tion (V-), the hyperbolic excess speed at the sphere of influence (VX,) is essentially 
a function of the low-thrust acceleration only, since negligible dependence on high- 
thrust specific implse was found. The functional form of Vtf; appears to be hyperbolic 
(quadra+,ic) with respect to VmH and is asymptotic to a 45-deg line passing through 
the origin and representing a limit of no low-thrust operation. 

The difference in Vg for the departure and capture modes is directly proportional 
to the low-thrust acceleration and planetary mass and inversely proportional to VmH. 

Although Figs. IV-3 through IV-5 illustrate the added energy at the sphere of 
influence due to low-thrust acceleration; these figures also indicate the required 
reduction in the energy imparted by the high-thrust system to achieve a given energy 
(Vm3) at the sphere of influence. As an example, an Earth-escape maneuver using 
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mixed high- and low-thrust systems must provide a hyperbolic excess speed of 0.40 EMOS. 
From Fig. IV-3, a low-thrust system with an acceleration of 
high-thrust V, requirement to 0.395 EMOS, while a low-thrust system providing 
g's reduces the high-thrust V, requirement to 0.375 EMOS. 
acceleration is 
thrust system. 
Therefore, the powered time of the "low-thrust" system would have to be reduced to 
provide a V, = 0.40 at the sphere of influence. 
only a high-thrust system. 

g s reduces the 

If the 'flow-thrust'l 
g's, it can be seen that there is no requirement for a high- 

In fact, the "low-thrust" system alone will provide a V, = 0.45 EMOS. 

The other alternative is to use 

Similarly, Fig. IV-4 shows the relative insensitivity of the acceleration level 
of the low-thrust system at Mercury as compared to Earth operations. 
the Jupiter data shown in Fig. IV-5 indicates that the acceleration level of the low- 
thrust system is quite critical. 
system alone will provide 0.25 ENOS. 
would use a high- and low-thrust planetary escape system. 
ments less than 0.25 EMOS, either a high-thrust system or the low-thrust system would 
suffice. 

Conversely, 

For a low-thrust level of id4 g's, the law-thrust 
Therefore, any mission requiring a V, > 0.25 

Conversely, for V, require- 

The low-thrust powered time is shown in Figs. IV-6 through IV-9 as a function of 
the hyperbolic excess speed provided by the high-thrust system. This powered time is 
directly proportional to the planetary mass and inversely proportional to V 
thrust acceleration. 
modes is directly proportional to planetary mass and low-thrust acceleration and 
inversely proportional to V 04r' 
is in nondimensional form as are Figs. IV-6 through IV-9. 
can use these figures universally. 
actually V 
Therefore,>he researcher can use the data universally for any size parking orbit he may 
be using in his analysis. Likewise, the powered-time parameter, 7, can be eqressed as 

and low- 
The difference in powered time between the departure and capture % 

for values of V% less than 4.0. This limiting value 
In this form, the researcher 

As an example, the abscissa of each figure is 
/Vcp0 ,  where Vcpo is the circular velocity of the planetary parking orbit. 

Where: t = powered time, sec 
V c D m  = planetary parking orbit radius, ft/sec or km/sec 

r u  
R p o  = planetary parking orbit radius, ft 

the powered time of the low-thrust system is then 

P 
= & (y) 

or km 

days 
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It appears t h a t  the  planetary departure and capture low-thrust operating times 
a r e  nearly ident ica l  i n  the region where Vq/Vc For a low parking o rb i t  
about Earth, t h i s  i s  equivalent t o  about 1.05 & 8 ~ .  Since t h i s  veloci ty  i s  far above 
normal values f o r  missions of i n t e re s t ,  the  above analogy i s  academic. Likewise, fo r  
Jupi ter ,  a value of V 
Mercury, an equivalent value would be about 0.38 EMOS, which corresponds t o  typ ica l  
Mercury missions. 

= 4.0. 

/V = 4.0 i s  equivalent t o  about 5.4 EMOS. However, f o r  
O"H C P O  

When Vc9(/Vcpp becomes grea te r  than 4.0, the high-thrust burn time becomes a 
s ign i f icant  f rac t ion  of the t o t a l  operational powered time, and, consequently, the 
dependence on the high-thrust specif ic  impulse and operational mode becomes pronounced. 
From an operational standpoint, it should be noted tha t  most interplanetary hyperbolic 
excess speeds are kept below 0.50 EMOS by judicious t ra jec tory  select ion.  Likewise, 
when considering mixed-thrust systems, the V, delegated t o  the high-thrust system by 
various optimization techniques seldom exceeds 0.3 EMOS. 

Figures I V - 1 0  and I V - 1 1  display vehicle f l i g h t  path angle a t  the sphere of influence 
as a function of hyperbolic excess speed and high-thrust burnout. 
EMOS the dependence on low-thrust acceleration and operational mode rapidly becomes 
negl igible .  
t h rus t  acceleration and i s  s l i g h t l y  l a rge r  f o r  the  capture mode as compared t o  the 
departure operational mode. For the three planets examined, the  f l i g h t  path angle 
remains reasonably constant f o r  VwH greater  than 0.2 EMOS and maintains a value above 
88 deg. 
upon reaching the sphere of influence i s  val id  (V% 2 0.2 EMOS) . 

Above a VwH of 0.2 

Below th is  value the f l i g h t  path angle i s  d i r ec t ly  proportional t o  low- 

Therefore, the approximation tha t  the vehicle velocity i s  r ad ia l ly  oriented 

To suwnarize the above statements fo r  the general discussion of high- andlow- 
th rus t  planetocentric operations, the following conclusions a re  made: 

1. The hyperbolic excess speed a t ta ined  by the vehicle a t  the planetocentric 
sphere of influence, V z  , i s  a function of the low-thrust accelerat ion and 
the hyperbolic excess speed a t  high-thrust burnout, V, , only; high-thrust 
specif ic  impulse does not appreciably a f f ec t  the augmentation of hyperbolic 
excess speed. 

H 

2 .  The functional. form of V g  i s  hyperbolic ( i n  a quadratic sense) and i s  
asymptotic t o  the l imit ing case of no low-thrust operation as hyperbolic 
excess speeds a t  high-thrust burnout become la rge .  

3. Vz-V i s  d i r ec t ly  proportional t o  low-thrust acceleration and planetary 
% mass and inversely proportional t o  VwH. 

4. The difference i n  V 3  f o r  the capture and departure modes i s  d i r ec t ly  
proportional t o  low-thrust acceleration and planetary mass and inversely 
proportional t o  Vq . 

IV-7 
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5.  An a rb i t r a ry  choice of vehicle parameters cannot be made i f  a specif ic  
V$, i s  t o  r e s u l t  from a designated V, . 
Low-thrust powered time i s  d i r ec t ly  proportional t o  planetary m a s s  and 
inversely proportional t o  low-thrust accelerat ion and V 

The difference i n  low-thrust operating time between capture and departure 
operational modes i s  d i r ec t ly  proportional t o  low-thrust acceleration 
and planetary mass. 
u n t i l  V,/V 
d i r ec t .  

H 

6. 
. 

mk 

7. 

This difference i s  inversely proportional t o  VmH/V 
c o  exceeds a value of 4.0; above t h i s  value the dependence becomes 

c o  

8. Vehicle f l i g h t  path angle a t  the a c t i v i t y  sphere i s  d i r ec t ly  proportional 
t o  low-thrust acceleration and s l igh t ly  l a rge r  f o r  the capture mode, as 
compared with the departure mode, f o r  V, l e s s  than 0.2 EMOS. Above t h i s  
value the f l i g h t  path angle remains essent ia l ly  constant and i s  a s l igh t  
function of high-thrust spec i f ic  impulse. 

H 

9. For a value of V, greater  than 0.2 EMOS the vehicle f l i g h t  path angle 
i s  g rea te r  than 88 deg, thereby implying t h a t  the assumption of radial 
velocity d i rec t ion  at the ac t iv i ty  sphere i s  val id .  

Earth Operations 

A n  examination of the departure and capture operational modes f o r  the planet 
The data of t h i s  pa r t  of the study are  more de ta i led  inasmuch a s  a Earth w a s  made. 

l a rge r  range of i n i t i a l  low-thrust accelerations i s  examined and the low-thrust 
propulsion system i s  now characterized by constant th rus t  and constant specif ic  
impulse. 

The high-thrust propulsion system was chosen t o  be e i the r  a chemical system 
(Isp = 430 sec) or a solid-core nuclear system (Isp = 800 sec) .  The low-thrust 
system was defined by a range of specif ic  impulses from 2000 see t o  10,000 sec. 
"he i n i t i a l  t h rus t  acceleration of t he  low-thrust stage was e i the r  loe2, 
lo'-*, or of the Earth 's  surface grav i ta t iona l  acceleration. The radius of 
the Earth 's  a c t i v i t y  sphere i s  131.68 Earth parking o r b i t  radii. 
has a rad!ius of 1.1 times the  radius of the Earth. The fundmental constants of 
the problem are  found i n  Table I V - I .  
planetocentric mixed-thrust model a r e  found i n  the 'Study Approach'. 

The parking o rb i t  

The basic assumptions which formulate the 

The increase i n  hyperbolic excess speed due t o  low-thrust operation within the 
Earth 's  ac t iv i ty  sphere can be obtained from Figs. IV-12 t o  I V - 1 4 .  
bo l ic  excess speed with high th rus t  only, V, , the  hyperbolic excess speed a t  the 
sphere of influence, V3, i s  a strong function of the low-thrust i n i t i a l  acceleration 

For a given hyper- 

H 

IV -8 



and a weak function of the low-thrust specific impulse. 
the high-thrust specific impulse in the examined range. 
appears to be hyperbolic (quadratic) with respect to V% and is asymptotic to a 45- 
deg line commencing at the origin (i.e., the limiting case of no low-thrust propulsion). 
For both Earth departure and capture, once the low-thrust initial acceleration is less 
than times the Earth surface gravitational acceleration, the effect of low-thrust 
specific impulse on Vtl; becomes negligible. Figure I V - 1 7  displays an enlarged view 
of Figs. I V - 1 2  and I V - 1 3  to 0.30 EMOS. The curve showing ld6 for initial low-thrust 
acceleration may be taken as equivalent to no low-thrust operation since, when V,, 
has the value 0.0182 EMOS, Vg, has the value 0.0187 EMOS, and when VmH has the value 
0.3005, V% has the value 0.3005. 

There is no dependence on 
The functional form of V z  

Low-thrust operating time as a function of hyperbolic excess speed at high-thrust 
burnout is shown in Figs. I V - 1 5  to I V - 1 8 .  
proportional to VmH and initial low thrust-acceleration and directly proportional to 
the low-thrust specific impulse. 
than lov3, there is no effect of low-thrust specific impulse on the low-thrust operating 
time for either the capture or departure operational mode. 

Low-thrust operating time is inversely 

When the low-thrust initial acceleration is less 

Figures I V - 1 9  and I V - 2 0  display high-thrust characteristic speeds for Earth 
departurelcapture and for both chemical and solid-core nuclear propulsion systems. 
These characteristic speeds include the effect of ‘gravity loss ’  due to the finite 
thrusting time of the high-thrust propulsion system and are calculated in the manner 
of Ref. I V - 2 .  As would be expected, the characteristic speed of the solid-core nuclear 
system is greater than that of the chemical system for a given hyperbolic excess speed 
at high-thrust termination, since characteristic speed increases with increasing 
specific impulse (increase in thrusting time). 

The difference between the vehicle’s instantaneous path speed, V*, and its 
hyperbolic excess speed, Vs,  at the sphere of influence is presented in Figs. I V - 2 1  
and I V - 2 2 .  
Earth’s surface gravitational acceleration, there is no effect on this difference due 
to low-thrust specific impulse. 

When the low-thrust initial acceleration is less than id3 times the 

For a hyperbolic excess speed at the end of high-thrust operation of 1.0 EMOS, 
V*-Vg is of the order of one-fortieth of one percent of the nominal heliocentric speed 
of any of the initial low-thrust accelerations examined. 
speed at high-thrust termination is zero (parabolic conditions), this difference with 
respect to nominal heliocentric speed ranges from about one-tenth of one percent to 
about 2.7% for initial low-thrust accelerations of lo-” to 

When the hyperbolic excess 

respectively. 

I V - 9  
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TABU IV-I 

PHYSICAL PARAMETERS OF PLANETS 

Planet 
Parameter 

Planetary Radius, km 

Parking Orb i t  Radius (1.1 x 
Planetary Radius, km) 

Parking Orbit Alti tude,  km 

Radius of Activity Sphere 
(Parking Orbit Fhdii)  

Parking Orbit Circular Speed, 
km/sec 

Local Gravitational Constant at  
Parking Orbit, g 

Multiplicative Time Conversion, 
days 

Earth 

6.37839 x lo3 

7.01623 x io3 

6.3784 x 10’ 

131.68185 

7 * 53713 

0.82645 

1.07742 x lo-“ 

,M” rc  u r  y Jupi te r  

2.50 x lo3 6.988 x io4 

2 750 x lo3 

2.50 x 10” 

7.6868 x io4 

6.988 x lo3 

40.55530 625.477 

2.80580 40.56664 

0.29220 2.18516 

1.13439 x lo-” 2.19311 x lo-” 
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HIGH - LOW THRUST PLANETOCENTRIC OPERATIONS 
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HIGH - LOW THRUST PLAN ETOCENTRIC OPERATIONS 
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HIGH -LOW THRUST PLANETOCENTRIC OPERATIONS 
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HIGH - LOW THRUST PLANETOCENTRIC OPERATIONS 
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HIGH - LOW THRUST PLANETOCENTRIC OPERATIONS 
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SECTION V 

MW-THRUST PLAJ!ETNENTRIC SPIRAL 

The purpose of the planetocentric law-thrust analysis  is  t o  develop an ins ight  
i n t o  the  low-thrust system parameters f o r  departure from or  capture onto a c i r cu la r  
parking orb i t .  The goal i s  t o  combine the planetocentric sp i r a l s  with the  helio- 
cent r ic  t ra jec tory  so procedures may be developed t o  optimize a s ingle  propulsion 
system which is t o  operate successively i n  both gravity f i e l d s .  
proach is  based on the  work of Perkins (Ref, V-1) and Edelbaum ( R e f .  V-2). 

The general ap- 

In  review, two l inear  forms of the equations r e l a t ing  the nondimensional 
veloci ty  parameter and the mass parameter were found f o r  the planetary low-thrust 
s p i r a l  involving departure from or capture onto a c i rcu lar  p r k i n g  o r b i t  with a 
specified hyperbolic velocity at ,  respectively, the terminal or  i n i t i a l  points.  
These l i nea r  equations, once t ranslated in to  vehicle system and t ra jec tory  terms, 
r e l a t e  the burnout mass f rac t ion  required t o  aceammodate a given hyperbolic velocity 
f o r  a specified i n i t i a l  thrust-to-mass r a t io ,  c i r cu la r  parking orb i t ,  and planet. 
The equations a r e  simple and straightforward and require, a t  most, an elementary 
i t e r a t ion  fo r  mass f rac t ion  (See Appendix C ) .  

The foregoing approach i s  limited by two aspcts :  the magnitude of the 
c i rcu lar  and hyperbolic ve loc i t ies  imposed by the  l inear izat ion of the dimension- 
l e s s  equations, and the  f a c t  that the  vehicle does not necessarily a t t a i n  the 
specified hyperbolic velocity a t  the sphere of influence. It is  the  purpose of 
the following t o  discuss i n  d e t a i l  the implications of the above two aspects. 
Comparisons are made between the present method and exact numerical r e su l t s  for 
payload mass fract ions and thrust ing times (planet-centered only). 
the method i s  shown f o r  planetocentric payload optimization under various hyper- 
bol ic  ve loc i t ies  t o  be achieved by a low-thrust  s p i r a l  departure fram Earth. 
Jus t i f i ca t ion  fo r  neglecting the  sphere of influence approach and posit ion o f f se t  
fo r  combining planetocentric and hel iocentr ic  phases is developed i n  Section VI, 
Calculation of Interplanetary Trajectories i n  the  Vicinity of the Planets. These 
l a t e s t  r e s u l t s  a r e  used i n  the  study of a s ingle  propulsion system performing 
parking orbit-to-parking o r b i t  missions. 
influences the vehicle, between the  planetocentric and hel iocentr ic  phases i s  taken 
in to  account. 

The u t i l i t y  of 

I n  t h i s  case the  t r ans i t i on  point, as it 

Summary of Mass Ratio Equations 

For convenience, the  mass r a t i o  equations derived i n  Refs. V-1 and V-2 (and 
given i n  Appendix C )  a r e  summarized below. It should be remembered that these 

v-1 



equations apply only t o  a planet-centered s p i r a l  and do not include the  e f f ec t s  of 
other perturbing bodies. 
a l s o  presented. 

The equations for thrust ing t i m e  and payload r a t i o  are 

Circular Orbit t o  Escape Velocity 

1 /4 m, = C?Xp{ [ I -0.805 (7) F/mc (%SI4 I} 
mE P'RC 

The term is the  i n i t i a l  mass on the c i r cu la r  orb i t ,  V, i s  the  c i r cu la r  
speed, C is  the je t  exhaust speed, and m, i s  the  mass a t  escape; F/m i s  the i n i t i a l  
thrust-to-weight r a t i o ,  p i s  the planet 's  g rav i ta t iona l  parameter, and F& is  the  
radius of t h e  c i r cu la r  orb i t .  

Circular Orbit t o  Hyperbolic Velocity 

11'4 mC F/m, mc - = exp { + C [ - l.746(~2) (K) } mH 

The term m,/m, is found from the  previous equation ( c i r cu la r  o rb i t  t o  escape 
veloci ty) .  
s t r i c t i o n  i s  a consequence of combining the l i n e a r  dimensionless equations for t he  
two modes: circular-to-escape and escape-to-hyperbolic. Note tha t  s e t t i ng  VH = 0 
i n  t h e  above equation does not yield t h e  proper mass r a t i o  which i s  given by the  
previous equation ( c i r cu la r  o rb i t  t o  escape). 

The asymptotic (hyperbolic) velocity,  VH, must not be zero; t h i s  re- 

Escape Velocity t o  Circular Orbit 

mE F/mE m, = exp{ !$- [ I - 0.805( 
F/m, is the  i n i t i a l  thrust-to-mass r a t i o ;  i.e., t he  value a t  i n i t i a t i o n  of the  
planetocentric phase where the  vehicle is  a t  loca l  escape velocity.  

Hyperbolic Velocity t o  Circular Orbit 

1/4 I /4 
- m H  = exp (c VH + vc [ I -  1.746(-) ("") I} , V ,  f 0  
mC C PlRC mE 

The terms mH and F / q  are, respectively, the mass and thrust-to-mass r a t i o  at  the  
i n i t i a t i o n  of planetocentric phase when the  vehicle is  a t  the specified asymptotic 
velocity, VH . The r a t i o  ~ / m ,  i s  given by 
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This is the mass r a t i o  required t o  decelerate from an asymptotic velocity t o  loca l  
escape velocity.  

Limitations on Velocity 

Because it i s  assumed t h a t  the  dimensionless parametric equations a r e  l inear  
(See Appendix A),  a region of va l id i ty  can be described which ac tua l ly  places a 
l imitat ion on the  c i rcu lar  and hyperbolic veloci t ies  depending on the  system 
parameters. Thus for :  

circular-to-escape; 

escape-to-hyperbolic; 

e s cape - to  -e i r e  u l a r  ; 

I /4 hyperbolic-to-escape; ,,, 
The foregoing l imitat ions correspond t o  an allowable e r ror  of about 5% between 

the l i nea r  and ac tua l  forms of the dimensionless parametric equations. 
seen, the lower limits on the ve loc i t ies  depend primarily on the i n i t i a l  thrust-to- 
weight r a t io s .  

A s  can be 

The importance of t h i s  dependence is pointed out l a t e r .  

Time and Payload Ratio 

The t i m e ,  T, spent i n  thrust ing during the  law-thrust s p i r a l  (departure or 
capture) is the time necessary t o  expend the propellant so  that the  burnout mass 
f rac t ion  (as required by the foregoing equations) is  achieved. 
specify the i n i t i a l  thrust-to-weight r a t i o  and specif ic  impulse or, equivalently, 
the powerplant-to-gross mass f rac t ion  and exhaust velocity. 

It remains t o  

where C is  the  exhaust velocity, pw the  powerplant mass fract ion,  7 the  thrus te r  
efficiency, and e& the  powerplant specif ic  mass. The f i n a l  mass fract ion,  pl,  i s  
the reciprocal  
l i s t e d  above. 

Note that 
parameters, i s  

of the  mass r a t i o  obtained from the  appropriate mass r a t i o  equations 

the i n i t i a l  thrust-to-mass r a t io ,  i n  terms of the  vehicle system 
given by 
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This notation i s  preferred i n  the present analysis because of the importance of 
th rus te r  eff ic iency and the dependence of eff ic iency on exhaust velocity. 
considerations a r e  a l s o  intimately re la ted  t o  the  payload f rac t ion  for the  planeto- 
cent r ic  phase, the hel iocentr ic  phase, or both combined. 

These 

Regardless of which operational phase is considered, the  most inclusive 
de f in i t i on  of wyload f rac t ion  accounts f o r  the mass of the  propellant tanks, the 
thrus te rs ,  the  t i e - i n  s t ructure ,  and the  power source (including power conversion 
equipment). The py load  f rac t ion  p ~ ,  is  thus 

where ~ l l ,  ( C )  is  the  r a t i o  of the thrus te r  mass t o  input power (a function of C), 
and p i s  the tank propellant mass f rac t ion  (assumed constant) defined as the r a t i o  
of propellant mass t o  the  mass of t he  propellant plus tanks. The t i e - in  and miscel- 
laneous s t ruc ture  is  represented by the proportionali ty constant, 0, which, when 
multiplied by the mass of t he  other i n e r t  hardware, yields  the s t ructure .  It can 
be seen that the  gayload is  a function of C and pw, the  two parameters which must 
be optimally chosen t o  maximize p~ for  a given thrust ing phase (planetocentric,  
heliocentric,  or both). 

If  the mass of the  propellant tanks i s  t o  be ignored, then p -t 1. Additionally, 
i f  t h e  thrus te r  mass i s  assumed constant, ra ther  than a function of exhaust velocity, 
it may be included as a part of the  powerplant by redefining %. 
case where the  propellant tanks and s t ructure  a r e  negligible and the  thrus te rs  a r e  
e i the r  part of the powerplant or simply ignored, the payload f rac t ion  s implif ies  
t o  

For the  spec ia l  

ILL - cLI--PW 

This def in i t ion  w a s  used i n  the  payload f rac t ion  calculation presented below. 

Comparison of Analytical  and Numerical Results 

The following presents the r e su l t s  of a b r i e f  study performed t o  invest igate  
the accuracy of the  approximate mass r a t i o  equations. 
a r e  made: 
(including zero) and t h e  other f o r  departure from a c i rcu lar  o rb i t  t o  escape 
velocity for  varying powerplant mass fract ions.  
i n  order t o  check the va l id i ty  of t he  equations fo r  the  overal l  problems of c i rcu lar  
orbit-to-hyperbolic velocity and f o r  t he  spec ia l  case of departure t o  only escape 
velocity.  
the  l i t e r a tu re ,  is  a l s o  studied. 

Two overa l l  comparisons 
one for  departure from a c i rcu lar  o rb i t  t o  varying hyperbolic ve loc i t ies  

The two approaches are employed 

In  the  l a t t e r  case another ana ly t i ca l  method, previously discussed i n  
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Circular Orbit t o  Hyperbolic Velocity 

The basis of comparison f o r  th i s  mode of operation is  t h e  work of Moeckel 
(Ref. V-3) published i n  1959 by NASA, Lewis Research Center. 
thrust ing program (constant, tangent ia l )  as assumed i n  the current study was used 
and applied t o  both outward (departure) and inward (capture) paths. 
da ta  a r e  presented i n  Ref. V-3 f o r  a range of thrust-to-weight r a t i o s  frm 10 t o  

and a range of exhaust ve loc i t ies  from those a t ta inable  by chemical rockets 
t o  inf in i ty .  

F'recisely the same 

Trajectory 

Departure frum or capture onto a c i r cu la r  pasking o rb i t  is  assumed. 

The approximate mass r a t i o  equations i n  this  report were applied t o  the case 
of departure from a 1.1-radii c i rcu lar  parking o rb i t  about Earth t o  hyperbolic 
ve loc i t ies  ranging from zero t o  about 1.6 times i n i t i a l  c i rcu lar  velocity.  
i n i t i a l  t h rus t  accelerations were used, and go ( g o  = acceleration of 
gravi ty  at  the  parking o rb i t ) ;  f o r  each thrus t  accelerat ion an exhaust velocity of 
5 and 3 times c i rcu lar  velocity was assumed. The prameter  used f o r  comparisons 
i s  Moeckel's nondimensional time, 7, defined as the c i rcu lar  velocity times t i m e  
divided by t h e  o r b i t  radius . 

Two 

The r e s u l t s  a r e  depicted i n  the following tab le  using Moeckel's nondimensional 
notation. 
graphs, thereby l imiting the accuracy with which h is  r e s u l t s  may be read, although 
it i s  su f f i c i en t  for  comparison purposes. 

It should be noted that Moeckel's r e su l t s  a r e  presented on logarithmic 

COMPARISON OF TLME PARAMEllcERs BETWEEN APPROXIMATE (PERxINS/ 

EDEiXAUM) AND EXACT (MOECKEL) MEZHODS; 

I n i t i a l  Acceleration = lo-*& 
Square of l oca l  v, = 5 v, = 3 
Hyperbolic Ve loc it y Time Parameter, 7 

0 
0.1 
0.2 
0 03 
0.4 
0.5 
1.0 
1.5 
2 .o 
2.5 

Approx 

8368 

11,170 

12, 580 

16, 760 
18,000 
19,050 

10 , 140 

11,940 

1.3 , 140 
15 , 240 

Exact* 

8400 
10 , 100 
11,200 
11, goo 
E, 600 
13, loo 
15,200 
16,800 
18 , ooo 
19,000 

Approx Exact* 

7873 
9067 
9961. 
io, 620 
u, 160 
11,670 
13,330 
14,540 
15,480 
16,270 

7900 
9400 
10,200 
10,800 
11,200 
11,600 
13,300 
14,600 
15 , 7-00 
16,300 

OUTWAFD PATHS 

I n i t i a l  Acceleration = 

v, = 5 v, 

Approx 

68.43 
69 e 08 
80.22 
88.58 
95.49 
101.5 
124.2 
140.7 
154 .O 
165.4 

Time Parameter , 
Exact* Approx 

68.4 64.76 
77 00 64.76 

91.0 82 2 3  
97.0 88.30 
102 93-50 
124 112.7 
140 126.2 
154 136 09 
165 145.7 

85 -0 74.81 

= 3  

Ekac t* 

64.8 
72.5 
79 -0 
84.5 
89.8 
94.8 
113 
126 
137 
146 

7 
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* = Read from Figs. 3a and 3c, R e f .  V-3 
go = accelerat ion of gravity at i n i t i a l  c i rcu lar  o rb i t  

V, = 
V, = 
T = c i r cu la r  veloci ty  x t ime / in i t i a l  o r b i t  radius, nondimensional time 

exhaust velocity/circular velocity of i n i t i a l  o rb i t  
hyperbolic veloc i ty/circulax veloci ty  of i n i t i a l  o rb i t  

I n  general  the lower the i n i t i a l  t h rus t  accelerat ion the  closer  the  agreement 
fo r  a l l  hyperbolic veloci t ies ,  with the exhaust velocity having a secondary e f fec t .  
This is a for tunate  set  of circumstances since, i n  a p rac t i ca l  sense, the th rus t  
accelerations a r e  not expected t o  be greater than 10-4g0 and t h e  operating exhaust 
ve loc i t ies  should be  not less than 3 times the c i rcu lar  velocity.  Consequently, 
is  is  expected tha t ,  regardless of t he  hyperbolic ve loc i t ies  t o  be achieved by 
the  e l e c t r i c  propulsion system, the approximate mass equations used herein are 
suf f ic ien t ly  accurate f o r  mission analysis purposes. 

It should be noted a l s o  t h a t ,  regardless of t he  th rus t  acceleration and 
exhaust velocity, the higher the  hyperbolic veloci ty  the  closer  the agreement 
between the two methods. This r e s u l t  i s  as expected from the  derivation of the 
approximate mass r a t i o  equations. 

An example of t he  l imitat ion on hyperbolic veloci ty  discussed previously 
i s  shown i n  the t ab le  for t h e  i n i t i a l  acceleration of 10-2go. 
hyperbolic velocity case t h e  agreement i s  very close, becuase a mass r a t i o  
equation i s  avai lable  fo r  t h i s  spec ia l  case of escape. To obtain a mass equation 
f o r  the nonzero-hyperbolic velocity case, two l inear  dimensionless equations must 
be combined, thereby giving r ise t o  the  r e s t r i c t i o n  on hyperbolic velocity. 
i s  expected t h a t  f o r  hyperbolic ve loc i t ies  near zero the  e r ror  would be large 
since t h i s  range of ve loc i t ies  falls  near the  nonlinear form of the  or ig ina l  
dimensionless prameter ic  equations. This f a c t  is shown c lear ly  i n  the t ab le  f o r  
f = 0.1, 0.2, 0.3 and an i n i t i a l  thrust acceleration of lO-'g0. 

For the  zero- 

It 

Circular Orbit t o  Escape Velocity 

I n  t h i s  comparison, the  ana ly t ica l  technique developed by Melbourne ( R e f .  V-4) 
w a s  applied t o  the operation of departing from a 1.1 Earth r a d i i  parking o rb i t  t o  
escape velocity.  Constant, tangent ia l ly  applied th rus t  is  again the  basic  thrust ing 
program. The Melbourne mass r a t i o  equation i s  employed complete with the  empirically 
derived correction fac tor  on thrusting time. 
curve fit  w a s  employed f o r  the correction fac tor ,  r a the r  than the  graph (Fig. 25 
p. 59, Ref. V-4). 

To f a c i l i t a t e  the  computation, a 

Part icular  system garmeters  chosen were an exhaust velocity, C, of 30 km/sec 
and a powerplant specif ic  mass of 20 kg/kw. 
t o  vary with exhaust velocity according t o  1/[1+(20/C)"]. 

The thruster eff ic iency was taken 
The p y l o a d  f rac t ion  
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(simplified def in i t ion)  and thrust ing t i m e  were computed f o r  powerplant mass 
fract ions ranging from 0 . 1 t o  1.0. 

The following tab le  displays the  r e su l t s  and indicates  t h e  closeness of the 
two methods. 
f ac to r  fo r  time, although a simple i t e r a t ion  is required on the mass r a t i o .  
method, however, can be eas i ly  employed; the  Perkins/Edelbawn formulation i s  pre- 
ferred because of t he  re la t ionship  t o  t h e  hyperbolic veloci ty  equations. 

The advantage of t h e  approximate method is  t h e  absence of a correction 
Either 

Powerplant Mass 
Fraction 

TIME TO REACH 

0.1 
0.2 
0.3 
0.4 
0 -5 
0.6 
0.7 
0.8 
0.9 
1.0 

ESCAPE FROM 1.1 EARTH 

Exhaust Velocity, C = 
Thrustor Efficiency = 

FiADII PARKING ORBIT 

Powerplant Specific Mass = 20 kg/kw 

Perkins /Edelbawn Melbourne 
Payload Fraction Time,  Days Payload Fraction Time, Days 

0.6900 
0 5923 
0.4938 
0.3950 
0 92959 
0.1967 
0.0974 

-0.1013 
-0.2008 

-0.0019 

316.0 
156 .o 
103.4 
77-13 
61.42 
50 98 
43 054 
37.98 
33 9 66 
30.22 

0.6903 
0.5926 
0.4942 
0 3954 
0.2964 
0 9 1973 
o ,0981 

-0.0013 
-0.1006 
-0.2000 

315.6 
156.0 
103.2 
76 90 
61.25 
50.83 
43.40 
37.85 
33 54 
30.10 

Influence of Propulsion Systems Parameters 

To develop insight  in to  the  importance of exhaust velocity and powerplant 
mss fraction, the  var ia t ion of the  planetocentric payload-to-gross mass f rac t ion  
w a s  computed for departure fram a c i rcu lar  Earth p r k i n g  o rb i t  t o  hyperbolic 
excess speeds of zero, 2.0, and 4.5 km/sec. 
the sphere of influence and in to  hel iocentr ic  space are neglected; the analysis 
appl ies  only t o  the  planet. Actually, t h e  objective of t h i s  computation i s  
two-fold: the  first is t o  understand the  behavior of t he  planetocentric payload 
f rac t ion  f o r  varying system and t ra jec tory  prameters ,  and the  second i s  t o  
relate the  planetocentric departure and capture phases t o  the  hel iocentr ic  

The problems of thrust ing through 
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t ransfer  wherein one propulsion system i s  u t i l i zed  f o r  t he  en t i r e  mission. The 
latter objective is  important s ince the u l t imate  goal of the  low-thrust s p i r a l  
analyses is  t o  combine the  planetocentric and hel iocentr ic  f l i g h t  prof i les  f o r  
maximizing the overa l l  payload fract ion.  

The low-thrust vehicle is  assumed t o  start i n  a 1 .1Ear th  r a d i i  parking 
o rb i t  with a powerplant spec i f ic  mass fixed a t  20 kg/kw. An assumed var ia t ion of 
th rus te r  eff ic iency with exhaust velocity was ut i l ized,  and the payload i s  simply 
defined as the  difference between the burnout mass f rac t ion  and the  powerplant 
mass fract ion.  
employed. 
played i n  Figs. V - 1  t o  V-6 which include two f igures  f o r  each of t he  three 
hyperbolic veloci t ies .  

The approximate (Perkins/Edelbaum) mass r a t i o  equations were 
The f i n a l  r e su l t s  for  payload f rac t ion  and thrus t ing  t i m e  are d i s -  

Several  observations may be made with the aid of these f igures .  It can be 
seen from Figs. V-1, V-3, and V-5 that ,  i f  t he  mission objective i s  t o  del iver  a 
payload t o  a given hyperbolic velocity, there  are optimal choices f o r  C and pw 
depending on the desired (or required) thrust ing time. Further, under a given 
set of dynamic and system conditions (excluding C and pw ), there i s  an absolute 
minimum t i m e  f o r  which optimal C and pw yield zero payload. 
Fig. V-1 wherein the minimum time is about 35 days f o r  C = 20 km/sec and pw = 0.71. 
Also fo r  times greater  than the minimum, there  are two se t s  of (nonoptimal) 
values for  the pair ( C ,  pw)  which produce zero payload. 
minimum the payload i s  negative regardless of the values fo r  C and pw. 

This can be seen i n  

For times less  than the  

Therefore, one would expect that, given a thrust ing t i m e ,  the  values f o r  both 
C and pw must have eo-related upper and lower bounds; i.e.,  the values a t  which 
payload is  zero,  Taking the SO-day case i n  
Fig. V-1, C must be between about 12 and 60 km/sec; for  these l i m i t s  pw must be 
0.54 and 0.89, respectively.  
corresponding increase i n  C and p L )  t o  almost 0.51, which i s  the minimum pw f o r  
t h a t  thrust ing time. This e f fec t  can be noticed fo r  longer thrust ing times. 

This is  t rue  f o r  C but not for pw. 

However, note that pw could be decreased (with a 

Besides providing higher payload fract ions,  the increased thrust ing times 
cause the payload fract ions t o  become less sens i t ive  t o  changes i n  C and pw about 
t h e i r  optimal values. This e f f ec t  is most noticeable i n  Fig. V - 1  and becomes 
less as the  hyperbolic velocity increases, Fig. V-3. 
time i s  100 days f o r  a departure t o  escape velocity, the exhaust velocity can 
range between 20 and 50 km/sec and the corresponding powerplant f rac t ion  between 
0.27 and 0.43; t h i s  r e su l t s  i n  a payload f rac t ion  decrease of not more than 10%. 
If the  vehicle i s  t o  achieve 2.0 km/sec hyperbolic speed within 100 days, the 
exhaust velocity can range between 20 and 40 km/sec and the  corresponding power- 
plant f rac t ion  between 0.31 and 0.47 f o r  a payload decrease not exceeding 10%. 

Thus i f  the desired thrust ing 
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A summary of t he  payload f rac t ion  da ta  i s  shown i n  Fig. V-7, wherein the 
maximum payload f rac t ion  is plot ted against  hyperbolic velocity. 
the minimum t i m e  f o r  zero payload is  c lear ly  indicated a t  given hyperbolic 
veloci t ies .  
i s  about 34.5 days. 

I n  t h i s  plot ,  

The absolute min imum t i m e  fo r  zero payload and zero hyperbolic velocity 

I n  the evaluation of candidate power systems, the problem arises as t o  w h a t  
values of C and IJW should be employed t o  maximize the  corresponding payload mass 
(not  f ract ion)  f o r  a fixed t i m e .  
c e r t a in  c lass  of powerplant are i t s  power r a t ing  and spec i f ic  mass or, equi- 
valently,  i t s  mass. Given the mass of the  powerplant, Q, t he  corresponding 

The charac te r i s t ics  usually associated with a 

payload, q is  given by 
mL= m ( pL) w z  

Hence the appropriate choices for C and pw should be those t h a t  maximize the  r a t i o  
p L / k ;  t h i s  is  t rue  i n  general, regardless of t he  def in i t ion  for payload fract ion.  
I f  t he  simplified def in i t ion  f o r  payload f rac t ion  were employed, then the  r a t i o  
p1/& should be maximized. 
problem i s  given i n  the accompanying table. 

A numerical example of t h i s  fixed-mass powerplant 

MAXIMIZATION OF PAYLOAD FOR FIXED POWERPLANT MASS 

Circular t o  Escape Velocity 
Powerplant Specific Mass = 20 k g / h  
Parking Orbit = 1.1 Earth r a d i i  

C ,  km/sec 

10 
1-5 
20 
30 
32* 
40 
60 
80 

0.22 
0.37 
0.44 
0.48 
0.49 
0.48 
0.39 
0.28 

0.289 
0.270 
0.270 
0.310 
0.320~~ 
0.362 
0.500 
0.640 

0.761 
1.37 
1.63 
1 - 5 5  
1.53 
1.33 
0.780 
0.437 

* Optimal for maximum payload f rac t ion  
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I n  t h i s  case, for  a powerplant having a spec i f ic  mass of 20 kg/kw ( t h e  da ta  were 
generated f o r  t h i s  spec i f ic  mass) and a given mass or power rat ing,  the optimum 
value fo r  C i s  about 20 km/sec and fo r  p,., about 0.27. For the  simplified payload 
f rac t ion  def in i t ion  the vehicle can de l iver  a payload whose mass i s  1.63 times 
t h a t  of t he  powerplant. Note that the  optimum values f o r  C and pw are qui te  d i f -  
ferent from those for maximum payload fract ion.  
speeds and a t  a given thrust ing t i m e ,  it can be seen t h a t  t he  optimum pw does not 
necessarily correspond t o  i t s  minimum value. 
the  i n i t i a l  vehicle mass becomes high since payload is  maximized with respect t o  
the  powerplant mass. 

Furthermore, f o r  other hyperbolic 

An important s ide  e f f ec t  is t h a t  

For the  case of applying a given th rus t e r  capable of a fixed spec i f ic  
impulse, the  problem i s  t o  e i the r  f i x  a ~.lw and accept the resu l t ing  t i m e  or f i x  
the time and accept t he  h. Fixing e i t h e r  pw or T is  somewhat a rb i t r a ry  unless 
there  a re  auxi l ia ry  system constraints  which would perforce determine e i the r  
parameter. 
maximizes the  r a t i o  pL /T fo r  the  given exhaust veloci ty  ( spec i f ic  impulse). 
example of t h i s  technique is given i n  Fig. V-8, wherein a 30 km/sec exhaust 
velocity w a s  assumed f o r  the  th rus t e r  operating under the  conditions given i n  
Fig. V-1. 
78 days (Fig. V-2). 

An a l t e rna t ive  approach would be t o  seek the  value of pw which 
An 

For this case, a p+, of 0.4 maximizes pL/T r e su l t i ng  i n  a t i m e  of about 
The corresponding payload f rac t ion  is  0.4. 

It i s  no coincidence that the  optimum value of pw equals the corresponding 
payload f rac t ion .  
fe ren t ia t ing  with respect t o  h. 

This f a c t  can be shown by forming the  r a t i o  ~ L / T  and d i f -  
The r e su l t i ng  equation fo r  optimum pw i s  

This is a nonlinear equation i n  ~.lw wherein p1 is a function of pw. A simpli- 
f i ca t ion  can be employed by using the sample r e s u l t s  of Fig. V-9. Note t h a t  
t h e  burnout mass f ract ion,  pl, is  essent ia l ly  independent of & f o r  p rac t i ca l  
thrust ing t i m e s .  
above equation yields  h0 
payload f r ac t ion  def ini t ion,  p~ = - &, produces p~ = a t  maximum k / T .  

Consequently, as a f irst  approximation, dp,/dh x 0, and the  
= pl 12. Putting t h i s  r e s u l t  i n t o  the  simplified 

Consequently, t o  obtain a first guess of t h e  optimal value f o r  & at  any 
C, a l i n e  joining equal values of p~ and & could be overlaid on the  p lo ts  of 
Figs. V-1, V-3, and V-5. 
V-4, and V-6. 
be placed on the p lo t s  of Figs. V-2, V-4, and V-6. 

The corresponding times then can be found from Figs. V-2, 
Alternatively,  a l i n e  connecting the optimal pw fo r  a given C can 

The f ac t  t ha t  dpl/dpw is approximately zero produces another in te res t ing  
aspect; namely t h e  slope of the p~ vs & curves should be about -1 f o r  any C 
(s implif ied payload def in i t ion) .  This feature i s  shown i n  Fig. V-10 far a Mars 
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s p i r a l  t o  escape velocity.  A plot  of the  da ta  on l i nea r  coordinates shows that 
the constant C l i n e s  have a slope of approximately -1. 
of maximum payload f rac t ion  i s  seen t o  be almost l i nea r  (dotted l i n e ) .  In  t h i s  
example case, for times varying between 20 and 100 days, the optimum value of C 
ranges between 23 and 35 km/sec respectively,  

Furthermore, t he  curve 

The l i n e  of optimum pw for  maximum pL/T is  indicated by the so l id  l i n e  of 
slope +l. 
condition of maximum k / T ,  there  ex i s t s  a unique minimum time; i n  Fig. V-11 it i s  
about 27.5 days, occurring a t  a C of about 25 km/sec and a pw of about 0.45. 
This is the point a t  which the  maximum ~ L / T  l i n e  in t e r sec t s  the maximum p~ l i n e  
i n  Fig, V-10. 
achieve i f  C is  unrestricted.  

The corresponding times a r e  given i n  Fig. V-11. Note t h a t  under the  

Furthemore t h i s  point is the  highest maximum value that p~ /T can 

Combined Planetocentric and Heliocentric Missions 

The major r e s t r i c t i o n  associated with t h e  mass r a t i o  equations employed pre- 
viously i s  the f ac t  t h a t  th rus t ing  may continue wel l  outside the  planet 's  sphere 
of influence and in to  the hel iocentr ic  f i e ld .  Accordingly, the performance 
computations w i l l  be i n  error .  This problem is circumvented by employing the 
concept of "matched asymptotic expansions" which is discussed i n  d e t a i l  i n  the 
low-thrust s p i r a l  portion of Section VI, Calculation of Interplanetary Tra- 
jec tor ies  i n  the Vicinity of the  Planets. 
necessary, and the posi t ion of fse t  with respect t o  the planet i s  ignored. 

No  sphere of influence def in i t ion  is 

From the l a t e s t  r e s u l t s  of t ra jec tory  s tudies  described i n  Section VI, the  
corresponding mass r a t i o  equations for the  low-thrust planetocentric t ra jec tory  
a re  as follows: 

Departure : 

Capture : 

where m, is considered t o  be the  mass of the vehicle a t  the i n i t i a t i o n  or 
termination of the planetocentric phase; i.e., at the  matching point. The 
i n i t i a l  th rus t  accelerations f o r  departure and capture are F /q  and F / h ,  
respectively. 
discussed below. 
hel iocentr ic  t ra jec tory  a r e  the  planet 's  hel iocentr ic  posit ion and velocity; t h i s  
latter condition corresponds t o  zero velocity r e l a t i v e  t o  the  planet. 

This formulation i s  used t o  agree with the computational model 
The above equations imply t h a t  t he  boundary conditions f o r  the  
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I n  the mass r a t i o  equation fo r  th rus t ing  between a c i r cu la r  o rb i t  and a 
hyperbolic velocity, VH, the constant previously employed was 1.746 based on the  
or ig ina l  work by Perkins and Edelbaum. 
constant should be 1.757. If 
optimal s teer ing is  u t i l i zed  t h e  appropriate canstant is  1.84, which is  used herein. 

I a t e r  refined analysis  indicated t h a t  the  
Both constants a r e  based on tangent ia l  thrusting. 

For thrust ing so le ly  i n  the  planet 's  f i e ld ,  the  VH term appears as indicated 
I n  the above by the  appropriate equation i n  the Summary of Mass Ratio Equations. 

mass r a t i o  equation t o  be used for combining the  planetocentric and hel iocentr ic  
t ra jec tor ies ,  the  hyperbolic speed VH does not appear. 
asymptotic matching technique employed here, the  hyperbolic velocity is assigned 
t o  the  hel iocentr ic  t ra jec tory  close t o  the  massless planet (see Section V I ) .  

This i s  because i n  the 

With t h e  foregoing equations and assumptions the  problem of analyzing the 
combined planetocentric and hel iocentr ic  mission becomes straightforward. 
assumed herein t h a t  one propulsion system performs the e n t i r e  mission from 
departure parking o rb i t  t o  capture parking orb i t .  
a c i r cu la r  p r k i n g  o rb i t  about the dest inat ion planet i n  a fixed t o t a l  time 
(parking o rb i t  t o  parking o r b i t ) .  The t o t a l  mission duration consists of the 
departure time, t he  hel iocentr ic  t ransfer  t i m e  (assumed constant f o r  a given 
optimization) and the  capture time. The problem i s  thus t o  choose C and pW and 
the corresponding d is t r ibu t ion  of planetocentric thrust ing time which maximizes 
the  overal l  payload-to-gross mass f rac t ion  f o r  a given t o t a l  mission duration. 
A schematic presentation of t h i s  mission p ro f i l e  is given i n  Sketch A. 

It i s  

The payload is  delivered onto 

t 
PLANE TOC ENTR IC 

DEPARTURE 

1 
.e-- 

" MATCH I NG 

IC t 
PLANETOCENTRIC 

CAPTURE 

-I  HELIOCENTRIC TRANSFER 

Sketch A 

Single Elec t r ic  Propulsion Systems, Parking Orbit t o  Parking Orbit Mission 
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An i n i t i a l  mass i s  accelerated t o  the  matching point at  which time the  
mass is  r g ~ ;  t h i s  becomes the  i n i t i a l  mass f o r  the  hel iocentr ic  t ransfer  which 
terminates with mass mlH. 
point with mass qH and f i n a l l y  ends on the pmking orb i t  with mass qc. 
payload is a. 
throughout th ree  d i f f e ren t  gavity f i e lds .  
equations t o  be  used it should be  pointed out that t h e  powerplant f rac t ion  at  
the  beginning of each thrust ing phase i s  d i f f e ren t  and determined by the  i n i t i a l  
value of & assigned at  the  departure point. 
burnout mass f rac t ion  i n  each thrust ing phase must take t h i s  i n t o  account. 

The start of t he  capture phase occurs a t  the matching 
The 

Note that the fixed value of C and powerplant mass m, i s  employed 
For the  normalized mass f rac t ion  

The corresponding computation f o r  

The relat ionships  between the three thrust ing phases ard the three power- 
plant f ract ions are depicted i n  Sketch B. 
powerplant f rac t ion  
thrust ing t i m e ,  TD, and terminal (or  departure) mass fraction, plD,  may be 
computed. Thus the powerplant f ract ion,  I . L ~  H, for  the  heliocentric portion may 
be found i n  addition t o  the  terminal heliocenteic mass f rac t ion  hH. 
planetocentric capture powerplant fraction, pwc, i s  now obtained and used t o  
compute the f inal  mass f rac t ion  at capture, pic, and the capture thrust ing t i m e ,  
Tc . The corresponding payload f rac t ion  is pL = wlH plC -& (simplified 
def ini t ion)  and the resu l t ing  t o t a l  t r i p  time i s  T = TD + TH + Tc.  
thrust ing time since coast periods may occur i n  the hel iocentr ic  t r ans fe r ) .  

Given a hD (which ac tua l ly  is  the 
t o  be  used i n  the  payload fract ion)  and a C, the  d e p r t u r e  

The 

(T -Is not the t o t a l  

pID 

T H  = CONSTANT 1 4c 

TO C 
p w o  = -  

pwH 

TC 
- P W H  

P I  H 
- -  P w c  

Sketch B 

Relationship Between Departure, Heliocentric,and Capture Phases 
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The middle p lo t  of Sketch B i s  obtained from the hel iocentr ic  t ra jec tory  
optimization program with optimum coasts, zero hyperbolic speeds on the boundaries, 
and no optimization of C and hH (since these a re  specif ied as pa r t  of the overal l  
problem). 
Julian dates of departure and a r r iva l .  
by the  two mass r a t i o  equations given above along with the time equation. 

The f ixed hel iocentr ic  t r i p  time, TH, is  the  difference between the 
The two planetocentric p lo t s  a r e  represented 

A possible procedure, formulated by a b r i e f  study of the  affected equations 
as depicted by Sketch B, would make use of the  f a c t  t h a t  the  terminal mass f rac t ions  
(p1o, p l ~ ,  and p l c )  are affected only s l i g h t l y  by changes i n  the r e l a t ed  powerplant 
mass fract ion.  Furthermore, the planetocentric terminal f r ac t ion  changes slowly 
with var ia t ions i n  e i the r  the powerplant f rac t ion  or  time, f o r  a given exhaust velocity.  
For a given t o t a l  t r i p  t i m e ,  T, the  approach i s  thus t o  pick a C, guess To and compute 
p w ~ .  Then h ~ ,  pIH, and hC are  eas i ly  computed. 
end of capture, pic, i s  computed and used t o  f ind  Tc . 
TI, w i l l  not give the  required time, T. 
solving fo r  a new To using the recently computed Tc; i . e , ,  To = (T - TH) - Tc . 
value of To i s  then compared with the or ig ina l  input value and, i f  the comparison does 
not s a t i s f y  a given tolerance, the current value of To becomes the new input f o r  
the planetocentric departure calculation and the  i t e r a t i o n  continues. 

The burnout mass f rac t ion  a t  the 
In  general, Tc added t o  TH and 

An i t e r a t i o n  i s  suggested which involves 
This 

A t  convergence f o r  TD (provided a solut ion ex i s t s  f o r  the  given C and fixed T) 
enough information i s  now available t o  compute pL. However, t h i s  i s  only fo r  a 
selected value of C which, i n  general, w i l l  not y ie ld  maximum payload f rac t ion .  
Therefore, a search on C i s  required wherein, f o r  each trial C ,  the  foregoing 
i t e r a t i o n  for To must be completed. 
t he  computer programming phase. 

The above suggested procedure did not reach 

For the case of an unmanned probe t o  be delivered t o  some terminal hel iocentr ic  
posi t ion and velocity,  no capture phase i s  required, and the  problem degenerates t o  
a f l i g h t  p ro f i l e  consisting of a planetocentric (Earth) departure and a hel iocentr ic  
t ransfer  t o  the f i n a l  boundary. 
hel iocentr ic  orb i t ,  a solar  probe or planetary flyby, and a solar  synchronous orb i t .  
The corresponding schematic f o r  the two-phase mission i s  depicted i n  Sketch C .  

Examples of such a mode would be an inclined 1-AU 
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LOW - THRUST 

EFFECT OF 

F 1 G . T - I  

E A R T H  DEPARTURE T O  E S C A P E  V.ELOCITY 

POWERPLANT MASS FRACTION A N D  EXHAUST 
VELOCITY O N  PAYLOAD RATIO 

HYPERBOLIC VELOCITY = 0.0 KMISEC 

POWERPLANT SPECIFIC M A S S  = 20  KG/KW 

THRUSTOR EFFIC IENCY = I / C I t ( 2 0 / C ) *  1 
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F-910352-13 FIG. X - 2  

LOW -THRUST EARTH DEPARTURE TO ESCAPE VELOClTY 

REQUIRED THRUSTING T I M E  

HYPERBOLIC VELOCITY = 0.0 K M / S E C  POWERPLANT SPECIFIC M A S S  = 20 KG/KW 

P A R K I N G  ORBIT  = 1 . 1  E A R T H  R A D I I  T H R U S T O R  E F F I C I E N C Y  = I / C  I + (  2 O / C l 2  3 
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LOW - THRUST EARTH DEPARTURE TO HYPERBOLIC VELOCITY 

EFFECT OF POWERPLANT MASS FRACTION AND EXHAUST 
VELOCITY O N  PAYLOAD RATIO 

HYPERBOLIC VELOCITY = 2 .0  KMISEC 

POWERPLANT SPECIFIC M A S S  = 20  KG/KW 

THRUSTOR EFFIC IENCY = I /  I I t( 2 0 / C ) *  1 
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F-910352-13 FIG. Z - 4  
LOW - THRUST EARTH DEPARTURE TO HYPERBOLIC VELOCITY 

REQUIRED THRUSTING TIME 

HYPERBOLIC VELOCITY = 2 . 0  K M I S E C  POWERPLANT SPECIF IC  M A S S  = 20 K G I K W  

P A R K I N G  O R B I T  = 1 . 1  E A R T H  R A D I I  THRUSTOR EFFIC IENCY = I / C I + ( 20 I C ) '  1 
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LOW - THRUST E A R T H  DEPARTURE TO HYPERBOLIC VELOCITY 

EFFECT OF POWERPLANT MASS FRACTION A N D  EXHAUST 
VELOCITY ON PAYLOAD RATIO 

HYPERBOLIC VELOCITY = 4.5 KM/SEC 

POWERPLANT SPECIFIC M A S S  = 20 KG/KW 

THRUSTOR E F F I C I E N C Y  = I /  [: I + (  2 O / C l 2  1 
P A R K I N G  O R B I T  = 1 . 1  E A R T H  R A D I I  
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LOW - THRUST EARTH DEPARTURE TO HYPERBOLIC VELOCITY 

REQUIRED THRUSTING T I M E  

HYPERBOLIC VELOCITY = 4.5 K M I S E C  POWERPLANT SPECIF IC  M A S S  = 20 KG/KW 

P A R K I N G  O R B I T  = 1 . 1  E A R T H  R A D I I  THRUSTOR E F F I C I E N C Y  = I / C I + (  2 0 / C I L  1 
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LOW -THRUST DEPARTURE TO HYPERBOLIC VELOCITY 

INFLUENCE OF THRUSTING TIME AND VELOCITY 

PERKINS/ EDELBAUM EQUATIONS 

POWERPLANT SPECIFIC MASS = 20 KG/KW 

THRUSTOR EFFICIENCY = I / [  I t ( 2 0 / C  121 
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F-910352-13 FIG. P-9  

LOW - T H R U S T  E A R T H  DEPARTURE TO HYPERBOLIC VELOCITY 

INFLUENCE OF THRUSTING T IME ON SYSTEM MASS FRACTION 
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SECTION V I  

CALCULATION OF INTERPLANETARY TRAJECTORIES I N  TKE VICIMW OF THE PLANETS 

Introduction 

The calculation of interplanetary t r a j ec to r i e s ,  e i t he r  powered o r  unpowered, 
involves the solut ion of an N-body problem. 
approximated as a s l igh t ly  perturbed two-body problem as long as the  space vehicle 
i s  far from any of the planets.  However, when the space vehicle passes close t o  a 
planet, the third-body effects  become important, and some way of approximating 
t h i s  three-body problem i s  necessary for . rout ine performance calculations.  
d i f fe ren t  methods have been developed fo r  the approximate solution of t h i s  problem. 
The f irst  of these i s  the patched conic approximation, while the second i s  the 
method of matched asymptotic expansions. 
patching has produced considerable confusion between the  two methods, and the 
methods are  often not as w e l l  understood as they should be. The dis t inct ions a re  
actual ly  quite simple. 

This N-body problem can be w e l l  

Two 

The s imi la r i ty  of the words matching and 

I n  the patched conic approximation, a two-body t ra jec tory  i s  calculated i n  
the v ic in i ty  of the planet u n t i l  the sphere of influence i s  reached. 
of influence, the posit ion and velocity are  used as i n i t i a l  conditions fo r  a 
heliocentric two-body t ra jectory.  
the same on both s ides  of the sphere of influence and of vector ia l ly  adding the 
planet ' s  velocity t o  the velocity r e l a t ive  t o  the planet t o  determine the 
heliocentric velocity on the outside of the sphere of influence. 
conic method usually neglects a l l  third-body perturbations on both legs  of the 
t ra jectory,  but the patching of the  two conics does simulate many of the important 
phenomena i n  the three-body problem. There is  no rigorous theory of the e r ror  i n  
the patched conic approximation, but numerical calculations have shown t h a t  it i s  
generally adequate fo r  performance purposes. 

A t  the  sphere 

The patching consists of keeping the posit ion 

The patched 

The use of the patched conic method for  interplanetary t r a j ec to r i e s  reqgires 
the solution of a multipoint boundary value problem because the posit ions and 
times a t  which the spheres of influence of both planets are pierced are not known. 
Because the solution of t h i s  multipoint boundary value problem i s  time consuming 
even with conic t ra jec tor ies ,  the patched conic approximation has not been used 
very widely f o r  interplanetary t ra jec tor ies .  
be used without change for  powered low-thrust t ra jec tor ies ,  except t ha t  here the 
t ra jec tor ies  on ei ther  side of the sphere of influence will be powered two-body 
t ra jec tor ies  and not unpowered conics. 

The patched conic approximation may 

V I  -1 
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The method of approximating the three-body problem t h a t  has been more widely 
used fo r  calculat ing interplanetary t r a j e c t o r i e s  i s  the method of matched 
asymptotic expansions. This i s  a systematic perturbation procedure which can be 
carried out t o  various orders of approximation. The basic idea i s  t h a t  the tra- 
jec tory  close t o  the planet is  expanded i n  powers of a small parameter, such as 
the mass r a t i o  of the planet t o  the sun ( p ) .  Another expansion i s  made of the 
hel iocentr ic  t r a j ec to ry  i n  the v i c in i ty  of the planet, carried out t o  the same 
order of approximation i n  powers of the same parameter. These two asymptotic 
expansions a re  then matched i n  a su i tab le  region near the planet,  such tha t  both 
solutions will give the same answer i n  t h i s  intermediate or "boundary layer"  
region. I n  t h i s  way, a composite solut ion i s  obtained f o r  the whole problem, 
close t o  the planet,  i n  the boundary layer  region, and far from the  planet.  

Systematic theories of interplanetary t r a j ec to r i e s  based on t h i s  idea have 
been developed f o r  the unpowered case by Breakwell and Perko (Ref. VI-1) and fo r  
the power-limited s p i r a l  low-thrust case by Breakwell and Rauch ( R e f .  VI-2). The 
zero-order term i n  the Breakwell-Perko theory i s  an analysis tha t  has been widely 
used for  performance calculations,  fo r  example i n  the Interplanetary Trajectory 
Handbook (Ref. VI-3). The zero-order term consists of calculat ing a hel iocentr ic  
e l l i p t i c  or hyperbolic t r a j ec to ry  which goes from the center of a massless planet 
t o  the center of another massless planet .  This i s  the outer solution. The inner 
solut ion consis ts  of a hyperbola around each of the planets.  The outer limit of 
t h i s  inner solut ion i s  the hyperbolic excess veloci ty  a t  i n f i n i t y .  
excess veloci ty  a t  i n f i n i t y  i s  then matched t o  the center of the massless planet .  
The Breakwell-Perko theory shows that  the e r ro r  i n  t h i s  approximation i s  of order 
p .  This e r ro r  i s  acceptable f o r  most performance calculations and is retained i n  
the analysis t o  follow. The Breakwell-Perko theory does carry out the next 
approximation t o  order p with e r r o r  of orderp2 ,  but t h i s  process requires numer- 
i c a l  evaluation of several  in tegra ls  f o r  each t ra jec tory .  

This hyperbolic 

The Breakwell-Rauch theory fo r  low-thrust t r a j ec to r i e s  i s  carried out through 
terms of order p's: and p i  with e r rors  on the  order of P so that  it is comparyble t o  
the widely used analysis fo r  high-thrust t r a j ec to r i e s .  
qui te  important f o r  a l l  the p4anets and should be included i n  performance calcu- 
la t ions .  The term of o r d e r P 2  i s  qui te  small fo r  the inner planets and has been 
neglected i n  the pas t .  It may be important f o r  t r a j ec to r i e s  t h a t  s p i r a l  around 
the larger planets.  The great advantage of using matched asymptotic expansions 
fo r  t r a j ec to ry  calculations i s  that the solut ion of the multipoint boundary value 
problem i s  p a r t i a l l y  carried out i n  the process of matching, so a l l  t h a t  is  
necessary t o  produce a t ra jec tory  i s  a solut ion of a two-point boundary-value 
problem. 

The term of o r d e r P 6  i s  

Also there i s  no need t o  define a "sphere of influence" for  each planet.  
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Powered Phases of High-Thrust Trajector ies  

The powered f l i g h t  t i m e  fo r  typ ica l  high-thrust propulsion systems i s  so short  
campared with a year t h a t  high-thrust operations i n  hel iocentr ic  space can usually be 
wel l  approximated by impulses. However, these thrust ing times are often not too much 
shorter  than the  period of a s a t e l l i t e  o rb i t  so  t h a t  it i s  necessary t o  provide 
corrections f o r  the  charac te r i s t ic  veloci ty  losses  of f in i t e - th rus t  t r a j ec to r i e s  i n  
the v i c in i ty  of planets. 
recent ly  been developed by Howard Robbins (Ref. V I - 4 ) .  
one which can be used f o r  m u l t i s t a g e  operations and f o r  multiple thrust ing periods. 
The AV f o r  a single,  f i n i t e - th rus t  maneuver i s  given by Robbins i n  the  general 
re la t ionship of Eq. ( V I - 1 ) .  

A very sinrple and accurate theory f o r  this problem has 
Robbins' theory is  a general 

( V I - 1 )  
.- 

I n  t h i s  equation, AVI i s  the required impulsive velocity,  pp i s  the grav i ta t iona l  
constant of the planet, C (Eq. ( V I - 2 ) )  i s  the exhaust velocity, r is  the - radius a t  the 
i n i t i a t i o n  of the impulsive thrust, 0 i s  the angle with the  horizontal, h i s  the primer 
vector of Lawden ( the  adjoint  t o  the velocity vector), t i s  the thrust ing time of 
the  stage (of i n i t i a l  mass, &)  given by Eq. ( V I - 2 ) ,  and k i s  the correction f ac to r  
f o r  the second moment of a constant-thrust burn which i s  given very accurately by 
the se r i e s  i n  Eq. (VI-3). 

- A V / C )  
t = ( i - e  T ( V I - 2 )  

For injecaion onto the perigee of an escape hyperbola from the pericenter of a co- 
planar e l l ipse ,  the  following two equations are sa t i s f ied :  

0 = O  

V I  -3 



F -910352 -13 

and the  resulting expression f o r  the  AV i s  given by Eq. (VI-6). 

+ . . . I  (VI -6) 

Where ro and Vo are the pericenter radius and velocity, respectively, a t  the  i n i t i a t i o n  
of thrust, and V, i s  the  required hyperbolic excess speed. 

This equation i s  based on an optimum steer ing program. The t i m e  may be calculated 
from the AV for  the impulsive case, thereby eliminating the need f o r  i t e ra t ion ,  
because the t i m e  i s  used only i n  the small correction term and er rors  i n  it have a 
higher-order e f f ec t .  
a hyperbolic approach t ra jec tory  i n t o  an e l l i p t i c  orb i t  a t  perigee. 

Precisely t h i s  same equation may be used fo r  in jec t ion  from 

It should be noted the Eq. ( V I - 1 )  i s  perfect ly  general and may be used for  
any single-burn maneuver which i s  optimal i n  the time-open and angle-open case. 
Equation (VI-6) is  the generalization t o  the constant-thrust case of the constant- 
acceleration analysis developed by Long i n  R e f .  VI-5. 

Low-Thrust Sp i r a l  Trajectories 

A systematic theory of low-thrust t r a j ec to r i e s  which start  from a circular  
orb i t  around the planet and go i n t o  hel iocentr ic  space has been developed by Break- 
w e l l  and Rauch i n  R e f .  VI-2. 
Fig. V I - 1 .  A t  a t i m e  tl, the vehicle i s  assumed t o  start from r e s t  a t  the of fse t  
point and t o  be thrust ing i n  the direct ion of the  asymptote t o  the s p i r a l  t ra jec-  
tory.  The hel iocentr ic  t ra jec tory  I s  then calculated from the of fse t  point a t  
time $ with the gravi ty  f i e l d  of the planet assumed nonexistent. For an approach 
sp i r a l ,  the e f f ec t  of the planet would be t o  place the vehicle on the s p i r a l  a t  
the point shown a t  time tl rather than t o  reach the of fse t  point a t  the same t i m e .  
Thus tl is  the  point a t  which the computation of vehicle performance for  the  
planetocentric portion of the f l i g h t  ceases fo r  departure or starts for  capture. 
This point is sought by the t ra jec tory  analysis so as t o  make the calculation of 
performance agree with the ac tua l  t ra jec tory  prof i le .  The analysls i n  R e f ,  VI--2 
is  fo r  variable-thrust power-limited t r a j ec to r i e s  but has been extended t o  the 
constant-acceleration case i n  unpublished work by Rauch. For the constant- 
acceleration case with optimal steering, the incremental velocity required t o  
reach t i m e  tl is  given by Eq. (VI-7). 

The basic idea of their  analysis i s  i l l u s t r a t ed  i n  

VI -4 
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where V, i s  the c i rcu lar  velocity of the  parking orbi t ,  T the  thrust ,  and m l  the  
vehicle mass a t  point tl. 

The constant i n  t h i s  equation is  d i f fe ren t  from the  one given earlier i n  
Ref. VI-6 and 7 because the  earlier result was for  tangent ia l  steering. The 
difference i n  these two constants (1.84 and 1.757) i s  the  difference between 
tangent ia l  thrust ing and optimum steering. The posit ion of fse t  from the center of 
the  planetlcontributes a change i n  propellant consumption t o  the  whole t ra jec tory  
of order 1.13 which i s  on the  order of the square of the velocity correction term i n  
AV, . 
around the  inner planets.  

This t e r m  can be neglected i n  performance calculations fo r  t r a j ec to r i e s  

Equation (VI-7) may be used without change for  constant-thrust t r a j ec to r i e s  
as w e l l  as constant-acceleration t r a j ec to r i e s  i f  the mass i n  the  equation i s  taken 
t o  be the mass a t  time tl. 
ear ly  par t  of the spiral,AVl i s  completely independent of the specif ic  impulse of 
the engine and the (small) magnitude of the thrus t  acceleration. 
t rue  on the la t te r  par t  of the t ra jec tory  when it approaches a s t ra ight  l i ne .  The 
only time that  the thrus t  acceleration a f f ec t s  the Av is  the re la t ive ly  short  t i m e  
around time tl. 
results i n  Ref. VI-8. 

The reason fo r  t h i s  interchangeabili ty i s  that i n  the 

Th i s  i s  a l so  

The va l id i ty  of t h i s  approximation i s  borne out by the numerical 

Low-Thrust Hyperbolic Trajectories 

An approximate analysis for  constant-acceleration t r a j ec to r i e s  with hyperbolic 
energy under the influence of l o w  thrus t  has been developed independently i n  
Ref. VI-? and R e f .  VI-9. Both of these references approximate the  actual  t ra jec-  
to ry  by a s t ra ight- l ine t ra jec tory  which starts a t  the center of the planet, 

t he  theory developed through the p r  and the 1.12 terms. ( p  i s  the r a t i o  of the mass of 
the planet t o  t h a t  of the  sun.) 
approximation w i l l  be of order p .  The ef fec t  of the planet i s  replaced by a velocity 
of fse t  and a posi t ion of fse t  a t  the i n i t i a l  (or terminal) t i m e .  
SV, and position, SR, o f f se t s  a re  given by Eqs. (VI-8) and (VI-9). 

Fig. VI-2. With t h i s  approximatioq, the equa%ions can be integrated exactly and / 

A s  i n  the  Breakwell-Rauch theory, the  error of t h i s  

The required velocity 

For v, 5 2 (&Ppy4:  

(VI-8a) 

VI-5 



Where 

and 

For 

Where 

and 

2 2 
(8V)  - v, 

8 R  = T 

2' m 

2 k =  

2 2  
(8V) -v, 

8 R  = - 

(VI-94 

(VI-8b) 

I 2- m 

I n  these equations, K and E are  the complete e l l i p t i c  in tegra ls  of the first and 
second kind. The velocity offset ,  6V, i s  i n  the  direct ion of the ini t ia l  hel iocentr ic  
th rus t  direct ion and i s  always la rger  than the i n i t i a l  hyperbolic excess velocity, V,. 
The difference between these two quant i t ies  i s  shown i n  Fig. V I - 3 .  
6V, i s  thus the  t o t a l  veloci ty  of the vehicle due t o  the i n i t i a l  hyperbolic excess 
seeed, V,, plus,that due t o  the low-thrust system acting within the p lane t ' s  ac t iv i ty  
sphere, (l$p/m)z D. 
velocity correction factor ,  D, evaluated from Eqs. (v1-8a) and (-8b). 
e i t he r  Eq. (VI-8a) or (-8b) i s  used depending on whether the value of V,(Tpp/m)-4, the 
abscissa of Fig. VI-3, i s  respectively l e s s  than, or grea ter  than 2.0. For a value 
exactly equal t o  2.0,  both equations y ie ld  ident ica l  r e su l t s .  

The velocity offset ,  

The e f f ec t  of the planet on the vehicle i s  obtained through the 
Note that, - 

The un i t s  depend on the units taken fo r  pp. If the  uni t  of distance i s  the AU 
and the uni t  of time, T, i s  the time required fo r  Earth t o  traverse one radian i n  i t s  

VI -6 



orbi t ,  then pp w i l l  be AU3/T3 and the resu l t ing  ve loc i t ies  axe i n  AU/T or ENOS 
(Earth 's  m e a n  o r b i t a l  speed). 
the  planet t o  the  Sun. 
It i s  qui te  small and can be neglected f o r  the inner planets.  

I n  these units, pp i s  equal t o  p, the  mass r a t i o  of 
The posi t ion o f f se t  i s  a posi t ive of fse t  i n  the same direct ion.  

These equations may once again be used without change f o r  the case of constant 
t h r u s t  provided the  mass i s  taken t o  be the i n i t i a l  (or terminal) mass of the vehicle 
a t  the  start (or  end) of low-thrust operation. 

Analysis of F in i t e  Periapsis Radius 

The foregoing analysis  was  based on an approximation t h a t  the i n i t i a l  per iapsis  
radius was zero; t h a t  is, the t ra jec tory  was assumed t o  start a t  the center of the 
planet.  The following analysis corrects  f o r  t h i s  and shows the e f f ec t  of s t a r t i ng  
a t  a f i n i t e  per iapsis  radius.  
t h rus t  rocket onto the per iapsis  of a hyperbolic o rb i t .  A t  t h i s  poiat ,  low-thrust 
propulsion i s  s ta r ted .  The analysis t o  follow shows t h a t  the e f f ec t  of the  f i n i t e  
per iapsis  radius i s  of order p, the  r a t i o  of the mass of the planet t o  t h a t  of the 
sun. 
analysis,  along with the other higher-order terms ( a l so  of order p)  which were neglected 
i n  the  analysis given above. 

The vehicle i s  assumed t o  be injected by the high- 

This i s  a higher-order e f f ec t  and may be neglected f o r  purposes of performance 

The e f f ec t  of the i n i t i a l  per iapsis  radius i s  analyzed by considering the 
difference i n  a l i n e a r  analysis of having an i n i t i a l  eccentr ic i ty  of unity or an 
i n i t i a l  eccent r ic i ty  corresponding t o  the  ac tua l  t ra jec tory  which starts a t  the 
parking o rb i t  radius.  
magnitude and t o  be directed tangent ia l ly ,  Under t h i s  perturbation, the l i nea r  
theory predicts  t h a t  the increase i n  energy of the o rb i t  w i l l  be proportional t o  
the a rc  length of the hy-perbola. Equations f o r  the radius, time, and arc  length 
of a hyperbolic o r b i t  a r e  given by the f i rs t  three equations t o  follow. I n  these 
equations, the semimajor axis, a, i s  taken t o  be posi t ive and H i s  the hyperbolic 
eccentric anomaly. F and E a re  the incomplete e l l i p t i c  in tegra ls  of the f i rs t  and 
second kind, respectively.  The uni t  of distance i s  the AU and the uni t  of time i s  
t he  time required f o r  Earth t o  t raverse  one radian i n  i t s  o rb i t .  
parameter of the  sun i s  unity and the grav i ta t iona l  parameter of the planet, p p ,  i s  
given i n  terms of t h i s  un i t  solar gravi ta t iona l  parameter. Consequently, i n  the 
expressions following, pp represents the mass r a t i o  of the planet t o  the sun. 

The acceleration due t o  t h r u s t  i s  assumed t o  be constant i n  

Thus the grav i ta t iona l  

r = a ( e  cosh H - 1 )  

t = 6 ( e  sinh H - H) 
Val 

(VI -10) 

(VI -11) 

VI -7 
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s = oe [ -  e2 - I  F(+,k) + e  sin+cosh H ]  
e2 

( V I  -12) 

2 I e sinh H 
e k =  - rP Val 

PP 
e = I + -  

What i s  of i n t e r e s t  is the change i n  time and the  change i n  arc  length (due 
t o  the change i n  per iapsis  radius) as the vehicle ge t s  far from the or igin.  
Accordingly, the l i m i t s  of Eqs. ( V I - 1 1 )  and (VI-12) as given by Eqs. ( V I - 1 3 )  and 
(VI-14) are  used. 

s = r + a [ i  f T  e 2 - ’  K(+) -eE(+-)] 
( V I  -14) 

The e f f ec t  of the f i n i t e  planetary radius w i l l  be assumed t o  be re f lec ted  i n  a 
change i n  the i n i t i a l  hyperbolic excess velocity of the t ra jec tory .  I n  order t o  
calculate  t h i s ,  consider the difference i n  hyperbolic excess velocity between a 
t ra jec tory  with un i t  eccentr ic i ty  and the actual  t ra jec tory .  
considers the changes due t o  both the time required t o  get  t o  a given radius and 
the  difference i n  a rc  length traveled i n  ge t t ing  t o  tha t  same radius.  

Equation ( V I  -15) 

T I  T sv, = - - ( S - S e . , )  - ( t -  te;,) 
vm 

If the values obtained from Eqs. ( V I - 1 3 )  and ( V I - 1 4 )  a r e  subst i tuted i n t o  
Eq. ( V I - l 5 ) ,  the  r e s u l t  i s  Eq. (VI-16) which gives an approximate indication of 
the  perturbation i n  i n i t i a l  hyperbolic excess velocity due t o  a f i n i t e  per iapsis  
radius.  
be small enough t o  be neglected f o r  performance calculations.  

It should be noted t h a t  t h i s  perturbation i s  of order p and w i l l  generally 

(VI -16) 

V I  -8 



F-910352-13 

Section V I  References 

VI -1 .  

VI-2. 

VI-3. 

VI-4. 

VI-5. 

VI-6. 

VI-7. 

VI-8. 

VI-9. 

Breakwell, J. V. and L. M, Perko: 
Conics, and the  Computation of Interplanetary Trajector ies ,"  
Astrodynamics and Ce les t i a l  Mechanics, Vol. 17 of the  AIAA Series ,  "Progress 
i n  Astronautics and Aeronautics," ed. by Duncombe and Szebehely, Academic 
Press, N.Y., 1966. 

"Matched Asymptotic Expansions, Patched 
i n  Methods i n  

Breakwell, J. V. and H. E. Rauch: 
Interplanetary Transfers ." "Asymptotic Matching i n  Power-Limited 

AAS preprint  66-114, 1966. 

Ross, S. E., e t  al: 
Handbook, NASA SP-35, 1963. 

"Space F l ight  Handbooks, Vol. 3 - Planetary F l igh t  

Robbins, H. M.: 
AIAA Journal, Vol. 4, No. 8, p. 1417-1423, 1966. 

"An Analytical Study of the Impulsive Approximation." 

Long, R .  L.: 
In f in i ty ."  

"Escape from a Circular Orbit with F in i t e  Velocity a t  
Astronautica Acta, Vol. V, Fasc. 3-4, p. 159-162, 1959. 

Fimple, W. R .  and T. N. Edelbaum: 
plants  t o  Selected Unmanned E lec t r i c  Propulsion Missions." 
64-494. NASA Contract NASw-737, 1964. 

"Applications of SNAP-50 Class Power- 
A I M  Paper No. 

Melbourne, W. G. and C. G.  Sauer: 
Solutions of Planetocentric and Heliocentric Trajector ies  of Low-Thrust 
Missions .If 

"Performance Computations with Pieced 

JPL Space Programs Summary No. 37-36, V o l .  I V ,  December 1965. 

Edelbaum, T. N.: 
Round Trip Mars Missions." 
October 1960. 

"A Comparison of Nonchemical Propulsion Systems for 
UA Research Laboratories Report R-1383-2, 

Ragsac, R .  V., e t  a l :  
Systems . I t  

Contract NAS 8-11309. 

"Study of Low-Acceleration Space Transportation 
UA Research Laboratories Report D-910262-3, Ju ly  1965, NASA 

VI-9 



F-910352-13 

EFFECT OF PLANETARY GRAVITATIONAL FIELD 
ON LOW-THRUST TRAJECTORY 
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SECTION V I 1  

MASS OPTIMIZATION PROGRAMS 

The analysis of low-acceleration propulsion systems usually centers on the  
proper select ion of exhaust j e t  veloci ty  (or the  specif ic  impulse) and powerplant 
mass f rac t ion  which together maximize payload f rac t ion  f o r  a given f l i g h t  prof i le .  
purpose of t h i s  discussion is t o  describe some techniques which w e r e  developed 
t o  expedite the  analysis of low-acceleration systems operating under constant 
th rus t  with optimum coast;. The main features of the  procedures are the u t i l i -  
zation of computer-developed t ra jec tory  data t o  estimate system parameters f o r  
a more refined payload f rac t ion  def ini t ion and the refinements made i n  the current 
constant-thrust, single-coast, payload optimization computer program. 

The 

Newly developed, but not thoroughly checked, i s  the hybrid-thrust mass 
optimization program. Because of t he  l imitations on time which were precipi ta ted 
by numerical d i f f i c u l t i e s  early i n  the  project ,  the  hybrid-thrust program could 
not be applied t o  as many sample and tr ial  cases as was o r ig ina l ly  desired. 
A discussion of the program i s  presented below. 

In  general, the ana ly t ica l  work was  based primarily on the work by Melbourne 
and Sauer i n  JPL Space Programs Summary No. 37-17. 

Analysis of Payload Fraction Optimization 

The simplest def ini t ion f o r  payload f rac t ion  recognizes that  the f i n a l  
mass fraction, pl, ( the r a t i o  of f i n a l  mass t o  i n i t i a l  mass) consists of the payload 
fraction, pL,  and powerplant mass fraction, pw . 
t i e - i n  structure,  etc. ,  may be assumed as pa r t  of the powerplant. 

If necessary, i n e r t  masses of tanks, 
Thus, 
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The f i n a l  mass f rac t ion  depends on the t ra jec tory  being executed, i . e . ,  J, the 
efficiency, T 9  of the  thrustor  i n  converting input power t o  j e t  power, the 
powerplant spec i f ic  mass, %, and powerplant mass f ract ion,  pN. The rocket equation 
f o r  power-limited systems i s  

I n  the analysis of a given mission, J i s  usually known and a, i s  given. 
efficiency depends, generally, on the exhaust velocity and the type of thrustor  
employed. 
following form i s  assumed for all the  analyses i n  this report .  

The 

For convenience, a hypothetical thrustor  efficiency curve of the 

I 
7 ) =  

where 10 < d < 40 &/see depending on the desired form of the curve, Fig. VII-1. 

An e l e c t r i c  propulsion system operating a t  high specif ic  imgulse re ta ins  
most of i t s  i n i t i a l  mass; thus, var ia t ions i n  the powerplant mass do not 
d ra s t i ca l ly  change the f i n a l  mass or thrust-acceleration p ro f i l e .  Under these 
conditions it i s  assumed tha t  t h e  minimum value of J = a? d t  and the average 
th rus t  acceleration over a minimum-J t ra jec tory  do not change with 1~7.r. 
use of the geometric mean fo r  the  average thrus t  acceleration i s  par t icu lar ly  
sui ted t o  the  purposes here and i s  employed throughout. 

The 

277P.w 
1/2 = (e) , a = a = (aoa,) 

Q,CP 

I /2 - 

where a. and al are, respectively, t he  th rus t  accelerations at the  beginning 
and end of the  mission and T, i s  the powered time. 

With the  foregoing equations the payload f rac t ion  may be maximized. Hence, 
the optimum powerplant f rac t ion  i s  given by 
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where Q' 5 dQ/dC. 
equations i f  the eff ic iency curve is d i f f e ren t  from t h a t  presented above. 
however, the given form is employed, then closed-form equations f o r  C, pw, and 
p~ may be wri t ten i n  terms of only J, T,, d, and q . 
summarized i n  Table I. 

This equation must be solved i t e r a t i v e l y  with the foregoing 
If, 

These formulas are 

For a given t ra jec tory  and mission it is helpful t o  know the  value of 
powerplant spec i f ic  mass which yields zero payload. 
m a x i m u m  ar, may be found; t h e  resu l t ing  equation is given a t  the bottom of 
Table I. 

By se t t i ng  p ~ , , ~  = 0, the 

Because the system parameters of i n t e r e s t  are given by simplified 
expressions, graphs are e a s i l y  constructed f o r  C,  pw , pl, and p~ a t  various 
values of d and the product JT, . 
d = 10, 20, 30, and 40 km/sec. 
The chart  giving the value of c& at zero payload has been constructed i n  
nomograph form and is shown i n  Fig. V I I - 1 0 .  

This has been done f o r  values of y2, JT,, and 
The graphs are displayed i n  Figs. VII-2 t o  -9. 

Use of Charts 

The se r i e s  of graphs is  useful  f o r  quickly estimating system performance 
f o r  constant-thrust  operation and under the  assumed simplified payload f rac t ion  
def ini t ion.  Since d and olW a r e  usually known, it i s  necessary t o  obtain values 
f o r  J and T, before using the curves. 
estimating J and T,; one involves the  constant-thrust, single-coast computer 
program, and the other  is  based on variable-thrust  data. 

Two methods a r e  current ly  available f o r  

In  the  present computer program t h e  constant-thrust J, powered time, and 
the corresponding system parameters a re  computed f o r  given a r r i v a l  and departure 
dates and a se r i e s  of powerplant spec i f ic  masses. Both J and T, change but 
s l i g h t l y  w i t h  q., and are almost constant a t  high values of (> 10 kg/kw); 
thus an average J and T, may be used. Given the above information the charts 
may be used t o  estimate system performance a t  d i f fe ren t  values of d, which may 
be interpreted t o  represent d i f fe ren t  types of thrustors ,  and f o r  other  values 
of % .  
may be estimated. 

In  addi t ion the l imit ing powerplant spec i f ic  mass for the given mission 

The a l te rna t ive  method of estimating J and T, employs estimates based on 
precomputed values which a re  compared t o  the variable-thrust  J (Jv ) and the  t r i p  
time, T. These comparisons lead t o  the  r a t i o  K = J/Jv and T = T/T,, which a re  
bases f o r  estimating J and Tp f o r  d i f fe ren t  missions. 
detai led i n  UARL Report F-910352-12, June 1967, f o r  Earth-&rs t r i p s ,  the bes t  
guess for T is  approximately 1.8 t o  2.0 

Based on the r e su l t s  

while fo r  K it is  about 1.2 t o  1.4 
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Further comparisons are necessary t o  determine the  ranges of K and T f o r  other  
missions. 
is  quite empirical, the  major  advantage i s  the  r e l a t ive  ease with which variable- 
thrust data are obtained f o r  d i f fe ren t  f l i g h t  prof i les .  Trips t o  Mars, i n  
par t icular ,  have been computed f o r  variable-thrust  operation and were given i n  
Report F-910352-12. 
are used on the end points of the low-acceleration t ra jectory.  

Although t h i s  lat ter method of estimating K and T t o  obtain J and Tp 

The major assumption i s  t h a t  zero hyperbolic excess speeds 

Improved Payload Definit ion 

An improved def ini t ion of payload f rac t ion  may be made t o  account f o r  the 
mass of the  thrustors ,  t h e  propellant tanks, the t i e - i n  s t ructure ,  and miscellaneous 
hardware. 
parameters: p,  the mass f rac t ion  of a loaded tank which i s  propellant, and cry 
the  proportionali ty constant which gives the s t ructure  and miscellaneous hardware 
mass as a proportion of t he  t o t a l  powerplant, thrustor ,  tank, and propellant 
masses. The mass of the  thrustors  is  obtained from the specif ic  mass, ~l,, which 
i s  the mass per un i t  of power input t o  the  thrustors .  
function of the specif ic  impulse or j e t  exhaust veloci ty  delivered by the  thrustor.  

For t h i s  purpose it i s  convenient t o  employ the following design 

In  general, UF is a 

The improved def in i t ion  of payload mass is thus 

where ml = burnout mass 

m, = powerplant 

mF = thrustor  

mT = tank 

m, = st ructure  and miscellaneous 

Normalizing with respect t o  i n i t i a l  mass and using the foregoing design para- 
meters, the  new payload f rac t ion  becomes 

= I - (I - t a)  (I-p,) - ( I  +a) [I +""I pw 

P Q W PL 
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which is  also summarized i n  Table 11. This is the  form that is  t o  be maximized 
with respect t o  exhaust veloci ty  and powerplant mass f rac t ion .  

The only new addition, besides the constants 0 and p, is the  thrustor  
specif ic  mass as a function of C .  
bombardment and contact-type thrustors  i s  i l l u s t r a t e d  i n  Fig. V I I - 1 1  f o r  two leve ls  
of technology. 
f i t  was  employed using a sum of two exponentials. 
i n  Table 111. Thus, i n  principle,  the optimum values of C and pw may be determined 
f o r  the improved payload def ini t ion.  

An example of the relationships f o r  electron- 

To derive an expression f o r  t he  empirical data, an  analyt ic  
The resu l t s  are tabulated 

Using the standard procedure and employing the geometric mean for average 
thrust acceleration, the optimum powerplant f rac t ion  i s  

The complete system of equations t o  be solved i s  l i s t e d  i n  Table I V .  
of  the  complicated relationship between C ~ F  and C ,  it i s  not possible to derive 
closed-form expressions f o r  the optimum system parameters. 
stand i n  Table I V ,  it is  not necessary t o  accept the efficiency function given 
therein; any relationship could be par t  of the i t e r a t ion  procedure. 
equation i n  Table IV, giving the exhaust velocity,  i s  a consequence of  the 
average thrust-acceleration ( geometric mean) assumption. 

Because 

A s  the  equations 

The last  

An i t e r a t ive  procedure, which appears t o  work f o r  a f e w  check cases, i s  
t o  first pick or guess a value of C (it i s  assumed that J, T,, d, CY,, 0, and 
P a r e  given). A value i s  assumed f o r  p1 and the  first two equations between 
pw and p1 (Table IT) a re  solved by successive substi tution. 
assumed C ,  subs t i tu te  pl t o  f ind  p W o p t ;  subs t i tu te  t h i s  t o  f ind  pl, e tc . ,  
u n t i l  pl converges. 
the remaining equation and the en t i r e  procedure is repeated. This nested 
i t e r a t ion  procedure is time-consuming and may encounter convergence problems. 
The solution could be enhanced by employing a "false position" technique or, 
preferably, by u t i l i z ing  a direct-search procedure on an augmented function 
which combines the system of equations. 

That is, f o r  the 

With t h i s  pl, an updated value f o r  C is obtained from 

The obvious values f o r  C and p1 t o  use as first guesses are those obtained 
from the closed-form equations of the simplified payload f rac t ion  analysis.  
the f e w  cases so  far analyzed, these i n i t i a l  guesses are close t o  the answers 
and therefore provide excellent s t a r t i n g  points.  

For 
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Since the  foregoing analysis is  based e s sen t i a l ly  on the  same assumptions used 
i n  the  preceding dkcuss ion  of t he  simplified payload f rac t ion ,  the equations of 
Table IV may a lso  be solved using J and T, obtained from the  computer program 
(which i s  based on the  simplified system) or from the  r a t i o s  K and 7. 

Improvements i n  Computer Programs 

The current single-coast program has been modified t o  solve the  closed-form 
equations f o r  t he  simplified payload f rac t ion  as an in t eg ra l  par t  of the Newton- 
Raphson i t e r a t ion .  
exclusively, and the addi t ional  input required is the "efficiency parameter", d. 
This modified program is ident i f ied  as deck F530. 

The form of t h e  eff ic iency function given above is  used 

A t  the f irst  input value of C$ i n  the  program (usual ly  1 kg/kw), the 
corresponding values of J and Tp a r e  used t o  determine the  powerplant specif ic  mass 
which would yield zero payload. If the next input value of % is less than t h i s  
q ma x ,  the computation continues; i f  not, the program goes t o  a new case. This 
avoids canputing t ra jec tory  and system parameters which, because aM is greater  than 
ol, m a x  lead t o  negative o r  zero payloads. Because of the  above two features ,  no 
i t e r a t ions  of the  system equations a re  required, therby eliminating convergence 
problems i n  the powerplant optimization, and unnecessary computations f o r  negative 
or zero payloads are avoided. 

Further refinements, leading t o  a separate and more general deck (F487), 
incorporate the system equations for both the  simplified and improved payload 
def ini t ions.  This second program contains that pa r t  of the foregoing program which 
employs the closed-form equations as par t  of the Newton-Raphson i te ra t ions .  In  
addition, f o r  each Cyw the corresponding J and T, a r e  used i n  a subroutine which 
d i r ec t ly  solves the optimization equations f o r  the  improved payload def ini t ion,  
external  to the  N-R algorithm. The addi t ional  inputs necessary a re  d, 0, p, and t he  
type of th rus tor  specif ic  mass relat ionship that i s  desired (of the four discussed 
previously). This modification includes the foregoing program, since 0 and p may be 
zero and one, respectively, and aF may be a constant or zero. 

Note that the optimizing equations a r e  solved external t o  the N-R algorithm and 
u t i l i z e  the J and Tp corresponding t o  the simplified payload def ini t ion.  
accurate solution would require that the equations be solved a t  each i t e r a t i o n  of the 
algorithm. However, based on the r e su l t s  showing the accuracy of the basic assumptions 
and procedure (as developed by Melbourne and Sauer), it i s  believed that, by using 
machine-computed J's and T, 'S,  the same approach as applied t o  the improved-payload 
case is a t  l e a s t  more than adequate f o r  mission studies and rapid system analyses. 

A more 

A recently uncovered charac te r i s t ic  of a l l  present versions of the single- 
coast  computer programs is the dependence of computed values of powered time and 
exhaust velocity upon the input guesses f o r  the r a t i o  of powered time t o  t r i p  time 
and the r a t i o  of constant-thrust J t o  variable-thrust  J. I te ra t ions  on these r a t io s  
using the computed powered time and constant-thrust J a r e  not pa r t  of the in te rna l  
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i t e r a t ions  between the exhaust veloci ty  (and powerplant fractioa) and the tra jectoxy 
optimization subroutine. The result is that the  computed system mass fract ions 
agree qui te  w e l l  with exact solutions (from the  multiple-coast program) but  t he  
specif ic  impulse is s l i g h t l y  i n  e r ro r  and the powered time even more so. These 
lat ter two approximations may not be su f f i c i en t ly  accurate f o r  detai led analysis of 
operating lifetime and system design requirements. 

A byproduct of the  foregoing charac te r i s t ic  is  that the powered time has 
prac t ica l ly  no e f f ec t  on the m a x i m u m  payload f rac t ion  near the  optimum specif ic  
impulse. 
the lifetime and operating requirements of the thrus tor  with no s igni f icant  
reduction i n  payload capabili ty.  

Thus the powered time may be reduced f r o m  i ts  optimum value t o  mitigate 

Additional Curve F i t s  f o r  Thrustor Specific Mass 

The sum-of-exponentials approach used above f o r  determing the analyt ic  
approximation t o  the thrustor  specif ic  mass function is qui te  accurate and 
yields a smooth curve f o r  the function and i t s  first derivative.  Although 
t h i s  approach i s  su i tab le  f o r  any curve of the  same form, it is time-consuming 
t o  determine the  appropriate coeff ic ients  i n  the analyt ic  approximation. 

To expedite the analysis of other types of thrustors  which may have some- 

It i s  
w h a t  d i f fe ren t  curves than those presented herein, an a l te rna t ive  analyt ic  
approximation w a s  studied which quickly yields the  necessary constants. 
necessary t o  specify the sample points of the given curve a t  exhaust ve loc i t ies  
of 20, 40, 60, 80, and 100 km/sec. A fourth-degree polynomial i s  f i t t e d  through 
the f ive  sample points using exact matching. Thus the coeff ic ient  matrix can be 
determined immediately by multiplying the  data matrix (of sample points)  by a 
transformation matrix, D. If the  f ive  sample points a r e  chosen a t  the  specified 
exhaust veloci t ies ,  the  matrix D remains the same f o r  any other th rus tor  curve. 

Table V gives the polynomial, the required input, the equation f o r  t he  
The analyt ic  approximation 

The coeff ic ients  

coeff ic ients ,  and the transformation matrix, D. 
and the required f i rs t  derivative are quickly obtained and may be subst i tuted 
i n  the i t e r a t ion  procedure f o r  the  equations of Table N. 
f o r  the four th rus tor  curves displayed i n  Fig. VII-11 a r e  presented i n  Table V I .  

The polynomial approximation has the  disadvantage of producing wavy forms 
fo r  the function and i t s  f i rs t  derivative and of not yielding accurate values 
between the data points.  However, these charac te r i s t ics  a r e  probably well within 
the accuracy probably desired f o r  mission and system analyses. 

Hybrid-Thrust Mass Optimization Program 

Capabili t ies 

The purpose of t he  mixed high- and low-thrust mass optimization program is t o  
minimize the gross vehicle mass on Earth (or planet)  parking o rb i t  f o r  a given 
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payloadto be delivered at  the  termination of the mission. 
three (one-way) f l i g h t  modes and a round-trip mission: 

The program handles 

1. 
2. 
3. 
4. 

The 

Planet-to-planet o rb i t s  
Planet- t o  - no capture 
Planet-to-planetary en t ry  
Earth-to-planet-to-Earth 

f i r s t  mode is  the  usual parking-orbit-to-parking-orbit mission between 
two planets .  
so la r  probe, out-of-the-ecliptic,  e tc . ,  wherein the final conditions are specified 
as hel iocentr ic  posi t ion or velocity.  
except t h a t  the capture a t  the planet is accomplished by a d i r ec t  entry w i t h  
atmospheric braking. The f i n a l  case, the round-trip mission, i s  e s sen t i a l ly  a 
combination of  the f i rs t  and t h i r d  modes. In  a l l  cases the mass of  the payload 
t o  be delivered a t  the planet is  t o  be specified as well as a range of  values for 
the  appropriate hyperbolic excess speeds and propulsion system parameters. 

The second includes terminal conditions such as planetary flyby, 

The t h i r d  mode is  similar t o  the f i r s t  

General Characterist ics 

In  general, the  program is a mass computation procedure tha t  determines the 
mass of the  en t i r e  vehicle before departure from the i n i t i a l  parking o r b i t  
( e i t h e r  from Earth or a p lane t ) .  
bolic excess speed ( i f  any) and departure hyperbolic speed, the i n i t i a l  mass of 
the vehicle i s  computed taking into account the mass of the l i f e  support system 
mission modules, so l a r  she l te r ,  basic s t ruc ture  and radiat ion shielding. 

For a given f i n a l  payload mass, f i n a l  hyper- 

For mixed-acceleration systems the overal l  payload f rac t ion  pL of the en t i r e  
vehicle is given, i n  general, by 

I-LL = P L D  PLH PLC 

where subscript  C represents the payload f rac t ion  of the capture system ( e i t h e r  
high-thrus t propulsion or atmospheric entry) which delivers the f inal  payload 
mass, H denoksthe payload f rac t ion  of the  hel iocentr ic  low-thrust system which 
delivers the capture system plus f i n a l  payload t o  some f inal  hy-perbolic excess 
speed, and D s ign i f i e s  the departure high-thrust system which accelerates the f inal  
payload plus the capture system plus the  e l e c t r i c  system t o  a given i n i t i a l  
hyperbolic excess speed. 
not appear. 

If the flight mode is  (2)  above the f ac to r  p~~ would 
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The coupling between the hel iocentr ic  phase and the  boundary phases is  through 
the hyperbolic excess speed. The payload f rac t ion ,  ~ L H ,  i s  computed by the helio- 
centr ic  t ra jec tory  optimization program f o r  various values of the hyperbolic excess 
speeds on the boundaries. 
a tab le .  

These data a r e  entered in to  the program i n  the  form of 

The minimization of t he  i n i t i a l  gross vehicle mass on parking o r b i t  is  ac- 
complished by a d i r ec t  search technique on the hyperbolic excess speeds r e l a t ing  
the high-thrust and low-thrust propulsion phases. 
hyperbolic speeds, the  gross mass is  computed and compared with previous values t o  
determine appropriate speeds which tend t o  decrease the mass. 
been found t o  be qui te  e f f i c i en t  i n  problems of t h i s  type. 

A t  each t r ia l  set f o r  the 

This procedure has 

The high-thrust s tep  mass computation subroutine is an improved version of 
that developed under the i n i t i a l  phase of Contract NAS2-2928 (Report UARL E-910352-9, 
July 1966). The subroutine includes gravity losses and optimum thrust-to-weight 
r a t i o  f o r  minimum s tep  mass. 
may be employed (chemical, solid-core nuclear, liquid-core nuclear, e tc .  ) by the 
proper specif icat ion of engine parameters such as specif ic  impulse, thrust- to-  
weight r a t i o ,  minimum engine mass, and maximum th rus t .  

Various types of high-thrust propulsion systems 

The addi t ional  mass f o r  a manned spacecraft  employs the scal ing l a w s  reported 
i n  E-910352-9. In  these l a w s  the l i f e  support system mass is  given as a function 
of the t o t a l  mission duration and the number of men i n  the crew. Fixed masses a r e  
assumed f o r  the mission and l i v ing  modules, she l t e r ,  e t c .  

The scaling of  the entry follows the  convenient l a w  

where mA and m i  a r e  the masses of the ablat ive entry system and a reference system, 
respectively, and V, and Vi a re  the atmospheric entry veloci t ies ,  required and 
reference, respectively. 
predicts the  growth of the reference system mass as higher entry ve loc i t ies  are 
accommodated. 
curve w i t h  one of i n t e re s t .  
ablat ive systems and is employed here f o r  convenience. 
program f o r  adding a s torable  propellant retrorocket if  V, exceeds a maximum entry 
speed l i m i t .  

The fac tor  6 i s  an entry system growth parameter which 

This growth parameter can be determined by matching the theore t ica l  
The above scal ing l a w  is merely representative of 

Provision is made i n  the 

The low-thrust mass computation subroutine employs the usual low-thrust mass 
equations f o r  constant-thrust operation. The change envisioned herein is the 

VII-9 
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u t i l i z a t i o n  of an improved def in i t ion  f o r  payload f r ac t ion  which includes the 
mass of the thrustors ,  propellant tanks, and miscellaneous s t ruc ture  as well  as 
the powerplant. 
d e t a i l  between the high-thrust and low-thrust mass computations and, consequently, 
t o  compute a f a i r l y  r e a l i s t i c  vehicle mass and i ts  associated subsystems. 

This procedure is u t i l i z e d  i n  order t o  maintain compatible 

The var ia t ion of th rus tor  eff ic iency and specif ic  mass w i t h  exhaust veloci ty  
u t i l i z e d  are those given i n  Figs. V I I - 1  and -11. 

V I I - 1 0  
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TABLE XLI-I 

CONSTANT-THRUST OPTIMUM SYSTEM PARAMETER§ 

SIMPLIFIED PAYLOAD FRACTION DEFIN ITION 

li” Y 
0.0864 JTp 

( I  + 0.0864 JTp 

2 Y 2  - d2 r I + 0 . 0 8 6 4  JTp 1 
- ‘1 

aWJ WHERE: y 2  5 - 2000 

C, K M / S E C  

J, m2/SEC3 

Tp, DAYS 

aw,  KGIKW 

d,  KMISEC 

2000 / J  

I + JT CL, AT ZERO PL: M A X  = 

0.0216 JTp 

m-I I 
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TABLEPII-2 

IMPROVED PAYLOAD FRACTION DEFINITION 

STRUCT WHERE: c T =  
mw + m~ +  TANKS +   PROP 

m P R O P  

P =   TANKS +   PROP 

QF(C) = THRUSTOR SPECIFIC MASS FUNCTION 

= POWERPLANT SPECIFIC MASS 

t,Ll = TERMINAL MASS FRACTION 

/J.w = POWERPLANT MASS FRACTION 

PL = PAYLOAD FRACTION 

m - 1 2  
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TABLE Xll-4 

CON STANT-THRUST OPTIMUM SYSTEM PARAMETERS 

IMPROVED PAY LOAD FRACTION DEFl N I T ION 

I 
I 3 T =  

Y 2  I +(g pi = 

r )  Pw I +  

Q w  J 
WHERE 7 2  = 2ooo 

AND J, m2/SEC3 
Tp, DAYS 
C, K M I S E C  

d, KM/SEC 

QF, KG/KW 

a,,,, K W K W  

YE-  14 
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SECTION V I 1 1  

VARIATIONAL FORMULATIONS OF POWER-LIMITED TRAJEC’PORY AND 

PROPULSION-SYSTESI OPTIMIZATION PROBLEMS 

Introduction 

The or ig ina l  appl icat ion of the Newton-Raphson algorithm t o  solve the  two- 
point boundary value problem associated with low-thrust t ra jec tory  optimization 
was presented i n  Ref .  V I I I - 1 .  In that work only the simplest problem was  t reated,  
the two-dimensional t ra jec tory  optimization problem f o r  a power-limited propulsion 
system t h a t  i s  completely unconstrained i n  thrust ing d i rec t ion  and magnitude of 
exhaust velocity.  Subsequently, more complicated problems have been solved 
including constant-thrust, minimum-time rendezvous (Ref. VIII-2); maximum final 
mass f o r  constant-thrust with optimum-coast, fixed-time rendezvous; and variable 
thrus t  with power given as P,e -‘’rn, (Ref. V I I I - 3 ) .  

I n  the present study more r e a l i s t i c  constant-thrust  problems involving 
addi t ional  complexities and constraints have been considered. 
propulsion system parameters which a re  constant i n  time along with the tra- 
jectory and thrust ing program has been analyzed, c losely following the o r ig ina l  
analysis of R e f .  V I I I - 4 .  

Optimization of 

I n  the in i t i a l . ana lyses  performed during the ea r ly  portion of the contract  
period, several  cons tant- thrust  f l i g h t  modes were completely analyzed. 
t i ona l  analysis t r e a t s  any continuous power-available function of posi t ion and time 
The boundary and t ransversa l i ty  conditions considered i n  the  study include fixed- 
time planetary flyby, fixed-time flyby at  a given radius,  optimum fixed-time 
o r b i t a l  t ransfer ,  and optimum fixed-time round t r i p s .  The e f f ec t  of discarding 
ine r t  mass during coasting periods has been investigated. Finally, the problem has 
been considered wherein the th rus t  vector i s  constrained t o  make a constant angle 
with the rad ius  vector i n  three dimensions. The equations f o r  those problems of 
immediate i n t e r e s t  resu l t ing  from t h i s  i n i t i a l  analysis a r e  summarized below. 
of Appendix A de t a i l s  the derivations f o r  a l l  the problems c i ted  above. 

The varia- 

Par t  2 

Immediately a f t e r  the summary of the  i n i t i a l  problem s e t ,  the development of 
two addi t ional  problems is presented. 
with optimum launch and a r r i v a l  dates at  both planets f o r  prescribed values of 
t o t a l  t r i p  time and stay time. 
t r i p  flyby including the e f f ec t  of the intermediate planetary perturbation. 
corresponding constant-thrust case was not formulated. 

The f i r s t  i s  the  round-trip stopover mission 

The second problem is the  variable-thrust  round- 
The 

In  the in t e re s t  of brevity,  

V I I I - 1  
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only the  major r e su l t s  of t h e  analysis  are presented here. The analysis is based 
upon the developments i n  Appendix A of t h i s  report .  
rigorous, der ivat ion of the  general var ia t iona l  calculus r e su l t s  upon which these 
formulations are based i s  presented i n  Appendix A, P a r t  1. 

A complete, though non- 

A f inal  problem t rea ted  is t h e  subst i tut ion of the  analyt ic  solutions f o r  the 
numerical solut ions i n  the  coast regions. This problem arose as the r e s u l t  of the  
computer storage requirements; t h e  use of ana ly t ic  solut ion reduces the number of 
mesh points and, consequently, the  amount of core storage needed. 

Summary of I n i t i a l  Problem Set  

The several  f l i g h t  modes summarized herein a r e  distinguished by the appropriate 
boundary and t ransversa l i ty  conditions. These include planetary rendezvous, 
planetary flyby, f lyby a t  a given hel iocentr ic  radius, and optimum o r b i t a l  t ransfer ,  
a l l  f o r  a fixed-time t ransfer .  These foregoing conditions correspond, respectively, 
t o  the following f l i g h t  modes: a planet-to-planet rendezvous, one-way flyby of a 
planet,  a so l a r  probe passing a t  some hel iocentr ic  radius,  and, f i na l ly ,  an optimum 
t ransfer  between any two hel iocentr ic  orb i t s .  In  a l l  of the following equations 
the objective function t o  be maximized is  the final payload-to-gross mass f rac t ion  
with respect t o  exhaust velocity ( spec i f ic  impulse) and powerplant f rac t ion .  

For t he  rendezvous mode, only constant power is  considered although s ingle  or 
double coast periods are t reated.  In  the case of the flyby, constant power is  again 
considered with a s ingle  f inal  coast  period or an intermediate and a f i n a l  coast. 
The solar probe is t rea ted  with power ranging as a function of hel iocentr ic  posit ion.  
In  t h i s  instance three cases involving coast periods a re  considered: (1) single  
f i n a l  coast, (2)  intermediate and f i n a l  coasts,  and (3) two intermediate and one 
f i n a l  coast. In the f i n a l  problem, optimum o r b i t a l  t ransfer ,  the power is  con- 
sidered t o  be a function of hel iocentr ic  posi t ion and one or two intermediate 
coast perios a r e  t rea ted .  

Problem 1: Constant-exhaust velocity,  constant-power, rendezvous i n  f ixed time 
with multiple coasts.  

Final  payload f rac t ion  is  maximized with respect t o  powerplant f rac t ion  and 
exhaust velocity.  

Di f fe ren t ia l  Equations: - - - - - - -  - - - -  

VIII-2 * 



where 

Switching Times: - - -  

(a) Case 1. 

- - - -  
Single intermediate coast  - switching times a t  a and T,. 

1 for  t Tl and t 2 T2 

0 for Tl < t < T2 
B =  

(b )  Case 2. Double intermediate coast - switching times a t  TI,  T,, T, 
and T4 

( e )  Case 3. Single intermediate th rus t  period, switching times a t  TI and T,. 

VIII-3 



0 FOR O I t  < T I ,  AND Ti!< t I T 

Either 

where TI- denotes conditions a t  the time of launch and Tf denotes the conditions 
at f i n a l  time. 

V I I I - 4  
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Problem 2: Problem 1, o n l y  with flyby 

Boundary Conditions 

Dif fe ren t ia l  Equations 

Same as f o r  Problem 1. 

- - - - - - -  - - - -  

Switching Times - - - - - - - -  
(a) Case 1. Single f inal  coast - switching time a t  TI. 

r 
I FOR t I T, . = {  0 FOR t > T, 

(b)  Case 2. Intermediate and f i n a l  coasts - switching times a t  TI, T,, 
and T,. 

V I I I -  5 
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Boundary Conditions - - - - - - - - - -  

Subsidiary Conditions - - - - - - - - - - -  

VIII-6 
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Problem 3: Solar Probe with Power a function of posit ion.  

Final  payload f r ac t ion  i s  maximized. The function of posi t ion i s  denoted by f .  

Di f fe ren t ia l  Eguations - - - - - - -  - - - -  

where Tl i s  the time a t  the beginning of the coast period. 

Switching Times 

(a) Case 1. 

- - - -  - - -  
Single f i n a l  coast - switching time a t  Tl . 

I FOR 0 I t I TI 

B = {  0 FOR TI < t I T 

VIII-7 



(b )  Case 2. Intermediate and f inal  coasts - switching times a t  TI, T,, and 
T3 

( e )  Case 3. Two intermed-ate and one f ina l  coast - swi--hing t-nes at  TI, 
T, > T3 > T4 7 and T5 * 

VIII-8 
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i = I  

Problem 4: Fixed-time optimum o r b i t a l  t ransfer ,  so l a r  power, multiple coasts. 

Final payload f rac t ion  is maximized. 

VIII-g 
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Differen t ia l  Eguations- - - - - - - -  - - -  
Same as f o r  Problem 3. 

Switching Times - - - - - - - -  
Same as f o r  Problem 1. 

Subsidiary Conditions - - - - - -  - - - - -  
Same as f o r  Problem 3. 

The Round-Trip Stopover Mission 

The mission prof i le  has the following character is t ics .  U s e  is  made of high- 
thrus t  impulses departing Earth, a r r iv ing  a t  the  dest inat ion planet, and departing 
the destination planet. The magnitudes of these impulses are fixed input, and no 
optimization is  carr ied out with respect t o  them in te rna l  t o  the algorithm. 
Atmospheric braking is employed back a t  Earth. 
systems constrained t o  constant-thrust-with-coast operation are employed, one f o r  
the outbound l eg  and the other f o r  the inbound leg.  
including powerplant, thruster ,  and tankage - is staged a t  the  destination planet 
along with a high-thrust rocket, tankage, and an intermediate payload. 

Two power-limited propulsion 

The first propulsion system - 

The objective function for  t he  algorithm i s  minimum i n i t i a l  mass of t he  space 

If desired, the optimum dis t r ibu t ion  between 
vehicle after staging of the  i n i t i a l  high-thrust rocket and tankage, fo r  a given 
f i n a l  payload mass back a t  Earth. 
high thrust  and low th rus t  can be obtained by running a sequence of cases with 

VIII-10 
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varying amounts of high thrus t .  For each case i n  such a sequence, the algorithm 
optimizes the low-thrust propulsion not only with respect t o  the t ra jectory,  but 
also with respect t o  the two s e t s  of propulsion system parameters. 
jectory optimization includes optimization of the  d is t r ibu t ion  of l e g  times and 
of launch date f o r  f ixed t r i p  time and s t a y  time at the  dest inat ion planet.  It 
a l so  includes optimization of the direct ions of the hyperbolic excess veloci t ies  
due t o  the high thrus t .  

The tra- 

Governing Equations f o r  Constant-Thrust Case 

Because the objective function f o r  t h i s  problem is minimum i n i t i a l  mass f o r  
a given final payload, the mass f rac t ion  is  defined somewhat d i f f e ren t ly  than i n  
the  previous formulations. The objective function 

Z Kp(0) 

i s  t o  be minimized where the mass f rac t ion  is 

( V I I I - 1 )  

( V I I I - 2 )  

and mp i s  the f i n a l  payload mass. 
s a t i s f i e d  i n  thrust ing regions a re  the following. 

The d i f f e r e n t i a l  equations that must be 

where v =  

( V I I I - 4 )  

( V I I I -  5 )  

fo r  outbound l eg  (0  2 t 2 T a ) ,  T, = planetary arr-mal time 

k 2 f o r  inbound l e g  ( T b  2 t 5 T) , Tb = planetary departure time 

V I I I - 1 1  
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During coasting periods the system becomes 

( VIII-6) 

i n  addition t o  Eq. ( V I I I - 4 )  which remains the  same. In  Eq. (VIII-7), TI is the 
time a t  the beginning of the coast  period. 

The switching times between thrus t ing  and coasting periods a r e  governed by 
the  switching function 

where 
( V I I I - 8 )  

during thrust ing periods and p( t)  = p( TI ) during coasting periods. 

The t ransversa l i ty  conditions t h a t  must be s a t i s f i e d  re la t ing  conditions a t  
T, and Tb ( the  times of a r r i v a l  and departure a t  the  dest inat ion planet)  a r e  the 
following . 

I 

( VIII-9) 

(VIII-10) 

VIII-12 
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From the f a c t  t h a t  

( V I I I - 1 1 )  

an addi t ional  re la t ionship i s  obtained, 

Furthermore t h e  boundary values of xi and ki must be re la ted  t o  the  planetary 
posi t ion and veloci ty  components, gi and &, at the times T, and Tb. 

( V I I I - 1 3 )  

Equations (VIII-9) through ( V I I I - 1 4 )  provide su f f i c i en t  internal  boundary conditions 
for t he  system of d i f f e ren t i a l  equations, Eqs . ( V I I I - 3 ) ,  ( V I I I - 4 )  , and ( V I I I - 5 ) .  

These conditions determine the optimum dis t r ibu t ion  of l eg  times f o r  a given 
It remains t o  provide information concerning the optimum launch t o t a l  t r i p  time. 

date for the t r i p .  
condition. 

This is  provided by the  following addi t ional  t ransversal i ty  

( VIII-15) 

V I I I - 1 3  
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Transversalitv Conditions f o r  Variable-Thrust Case 

The corresponding variable-thrust  solut ion of the  round-trip stopover mission 
is  required as a s t a r t i n g  approximation. 
is the same as usual. 
constant-thrust case, the  variable-thrust  t ransversa l i ty  conditions a re  

The system of d i f f e r e n t i a l  equations 
Corresponding t o  Eqs . ( V I I I - 9 )  and ( V I I I - 1 5 )  for the  

( V I I I - 2 1 )  

V I I I - 1 4  
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Round-Trip Flyby Mission (Variable Thrust) 

The only way t o  avoid large amounts of machine time and tedious matching 
of boundary conditions a t  the destination planet i n  the  optimization of the  
t ra jec tory  f o r  the  round-trip flyby is t o  employ in te rna l  t ransversa l i ty  con- 
di t ions and solve the outbound and inbound legs  simultaneously. Unfortunately 
these conditions f o r  the variable-thrust  s t a r t i n g  solut ion are suf f ic ien t ly  
complicated t o  r a i se  the question of whether t he  corresponding constant-thrust 
system may defy numerical solution. If such is  the case, an a l te rna t ive  would 
be t o  use the  variable-thrust  solution t o  supply fixed in te rna l  boundary con- 
d i t ions  for  the constant-thrust solution. Such boundary conditions would be 
very close t o  optimum, and i f  the exact optimum i s  desired a numerical search 
procedure could be employed. 

The e f f ec t  of the planetary encounter a t  flyby i s  t o  change the  space 
vehicle 's  veloci ty  vector. In  the  standard approximation of separating helio- 
centr ic  and planetocentric motion, t h i s  velocity change is  considered t o  be 
impulsive. A s  a r e su l t  of the encounter, the veloci ty  vector i n  the planeto- 
centr ic  frame undergoes an orthogonal transformation, the matrix of which 
depends upon the periradius of t he  planetary encounter, the planetocentric 
energy, and the or ientat ion of the plane of the planetocentric hyperbola. 

If the planet idea l ly  were conzidered t o  be a mathematical focus of 
gravi ta t ional  a t t rac t ion ,  then any V, vector could be rotated into any direct ion 
by proper select ion of the periradius.  However, one must consider the  inequality 
constraint  imposed by the f a c t  that the periradius cannot be l e s s  than a lower 
bound imposed by the radius of the sensible atmosphere of the planet.  

Instead of optimizing subject t o  the  inequality constraint ,  t h e  problem 
can be treated i n  two par t s .  F i r s t ,  the  problem is  solved subject t o  no 
constraint  on the periradius.  If the optimum periradius turns out t o  be less 
than the  imposed lower bound, the problem is  solved again f ix ing  t h e  periradius 
a t  the lower bound. This is  the same procedure used t o  handle the  inequality 
constraint  on the  f i n a l  reentry velocity. The technique a l so  allows one t o  
specify any desired value for the  periradius.  

General Transversality Conditions f o r  Round-Trip Flyby 

Since the variable-thrust  equations of motion and Euler-Lagrange equations 
f o r  t h i s  mission are the  standard ones, only the various t ransversa l i ty  con- 
di t ions w i l l  be given. The general t ransversa l i ty  conditions fo r  the round- 
t r i p  flyby are 

r 3 1 T  

(VIII-22) 
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( VIII-23) 

where T, i s  the  time of flyby. 
f o r  the  round t r i p .  
(f lyby) a t  t = T, Eq. (VIII-22) gives 

Equation (VIII-22) determines the bes t  launch h t e  
For t he  case of a given V, a t  t I= o and veloci ty  open 

Xi+3(T )  = 0 

(VIII-24) 

(VIII-25) 

The second condition, Eq. (VIII-23), determines the best flyby time and the 
optimum character is t ics  of t he  planetary encounter. The latter, of course, 
depend upon the  constraint  on the  periradius.  It is instruct ive t o  first consider 
the case where there i s  no planetary perturbation. This corresponds t o  a very 
la rge  periradius of  the  encounter. For t h i s  case Eq. VIII-23 gives 

( VIII-26) 

and 

( VIII-27) 

The more general conditions must reduce t o  Eqs . (VIII-26) and (VIII-27) i n  the 
l imi t  as the periradius goes t o  inf in i ty .  

VIII-16 
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Transve rs a l i t y  Conditions f o r Per i radius Unconstrained 

Next, consider the case where the periradius is completely unconstrained. 
In  the planetocentric frame of reference the orthogonal transformation of the 

vector is represented by a 3 x 3 matrix A 3 [aij] .  

(VIII-28) 

The orthogonal, unimodular matrix A can be specified by three independent Euler 
angles 4 ,  8, and cp. 

COS+ - cos8sin+sinq -s inqcos+ - cos8sin+cosP sinesin+ 

+ COS8 cos+ sinq -sinP sin+ + C~@cos+cos\U -singcos$, 

sin9 sinq sin 9 cosy cos 9 

(VIII-29) 

In  terms of hel iocentr ic  vectors,  Eq. (VIII-28) i s  

A a a 
V ( T a + E )  = g ( T a + E )  + A [ ? ( T a - € )  - g ( T a - - E ) ]  

(VIII-30) 
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where the matrix dA = [da, 1. For example, 

da, ,  = -(sinTcosd, + cos\ksin+cos8)d* - (cosYsin+ + sin*cos+cos8)d+ 

+ s inYsin+ s in8 d 8, etc .  
(VIII-32) 

When the components of Eq. (VIII-31) a re  subst i tuted in to  the general 
t ransversa l i ty  condition, Eq. (VIII-23), and the coeff ic ients  of the independent 
var ia t ions,  d t (T ,  - E), dki (T, - E ) ,  d$, dy, and de, a r e  s e t  equal t o  zero, the 
following conditions r e su l t .  

where 

VIII-18 
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Equation (VIII-33) corresponds t o  Eq. (VIII-26) fo r  the unperturbed case, and 
Eq. (VIII-34), which determines the  optimum flyby time, has exactly the same form 
as i ts  opposite f o r  the unperturbed case, Eq. (VIII-27).  
equation, Eq. (VIII-35) ,  has t o  do with determining t h e  optimum values of t he  
three Euler angles, $, cp, and 8, i n  the rotat ion m a t r i x  A.  Altogether a t  the 
flyby point, t h i r t een  quant i t ies  must be determined, i . e . ,  the time, 3 posit ion 
coordinates, 6 velocity components (3  a t  T, - e and 3 a t  T, + e ) ,  and the  three 
E u l e r  angles. 
(VIII-35), supply 7 of the required 13 conditions. 
the vehicle veloci ty  a t  T, + c t o  3 th+t a t  T, - e ,  supplies 3 more of them. 
Final ly  the  ephemeris equation, r = g ( t ) ,  supplies the remaining 3 conditions for 
the  posit ion coordinates. 
information t o  determine the in te rna l  boundary values a t  the flyby point. 

The additional vector 

The equations of t ransversal i ty ,  Eqs . (VIII-33) , (VIII-34), and 
Equation (VIII-30), re la t ing  

Thus the  equations presented above supply suf f ic ien t  

Round-Trip Flyby Transversality with Periplanet Radius Fixed 

Final ly  it is  shown how the  above conditions must be modified i n  order t o  
constrain the  periplanet radius t o  a fixed value. 
radius and hyperbolic excess velocity,  the angle 0 between the incoming and out- 

For given values of periplanet 
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going asymptotes i s  fixed. 
i n  the  ro ta t ion  matrix A may be varied independently. 
may be expressed as a constraint  on the  t r ace  of A .  

This means that only two of the  three Euler angles 
This addi t ional  constraint  

4 X = a,, I + 2cose = 3 -  3 (VIII-45) 

where e is  the  eccent r ic i ty  of the planetocentric hyperbola. 
i s  re la ted t o  the hyperbolic excess veloci ty  simply by 

The eccent r ic i ty  

where V, is i n  EMOS and K = d p s  rp /pP( 
Eq. (VIII-45),  

. Subst i tut ing Eq. (VIII-46) in to  

and different ia t ing,  

d V: 
8 k2 

I +  k2v: 
( I  + K2V:I2dX = 

I n  terms o f  the f i l e r  angles 

and 

(VIII-47) 

( VIII-48) 

( VIII-49 ) 

d X  = - ( I  +cos8)sin(Y +t#d(dW+d+) - [ I  +cos(Y ++)]sin8d8 (VIII-50) 
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while 

( V I I I -  51) 

Using Eq. ( V I I I - 4 8 ) ,  the var ia t ion de can be solved f o r  i n  terms of the  other  

The difference between t h i s  case and the 
var ia t ions.  Then t h i s  can be subst i tuted f o r  the var ia t ion  dB i n  the  general 
t ransversal i ty  condition, Eq. ( V I I I - 2 3 ) .  
unconstrained case i s  tha t ,  i n  the l a t t e r ,  de w a s  another independent var ia t ion.  
Since the algebra is  ra ther  involved only the resul t ing conditions w i l l  be 
presented. To shorten the notation the  following functions a re  defined. 

( V I I I -  52 ) 

Employing the above def ini t ions , the resu l t ing  t ransversa l i ty  conditions for the  
constrained periradius case may be wri t ten as follows. 

( VIII- 56) 
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( V I I I -  58) 

It i s  seen from Eq. (VIII-56) t h a t  the  primer vector nq longer undergoes a 
simple orthogonal transformation a t  flyby, but the  norm of p changes depending i n  
pa r t  on the hyperbolic excess velocity.  
i n  Eq. (VIII-57) ,  but otherwise Eq. (VIII-57) has the same form as f o r  the uncon- 
s t ra ined case, Eq. (VIII-34). The three equations determining the optimum values 
of the  Euler angles a r e  Eqs. (VIII-47) , (vIII-58) , and (VIII-59). 
are 13 internal  boundary conditions t o  be specified and 13 equations. 

-+ 
This being the case, the  norm of p appears 

Again there  

Analysis of Analytic Coast Solutions 

A major l imi ta t ion  t o  the f i n i t e  difference Newton-Raphson algorithm for 
solving systems of nonlinear d i f f e r e n t i a l  equations with s p l i t  boundary conditions 
is i t s  large requirement of computer storage. 
requirement depends d i r ec t ly  upon the number of mesh points employed f o r  a 
par t icu lar  problem. In  the par t icu lar  case of constant-thrust-with-coast tra- 
jectory optimization problems the algorithm has always been used t o  numerically 
solve the  whole t ra jec tory  including the coasting regions. 
t h a t  analytic solutions exis t  for both the t ra jec tory  and the  associated primer 
vector i n  coasting regions. 
the  numerical problem a t  the  switching points a great many mesh points would no 
longer be needed, thereby permitting a reduction of computer storage requirements 
for a given problem. 

Among other factors ,  the storage 

But it is  w e l l  known 

If these analyt ic  solutions could be coupled with 

Generally speaking, t he  cases t h a t  make the  most severe demands upon computer 
storage are the  t r a j ec to r i e s  t o  the  outer so la r  system (Jupi te r  and beyond) and 
these t r a j ec to r i e s  usually involve coast periods which const i tute  a major portion 

VIII-22 
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of the t r i p .  
handled conventionally within the l imitat ions of core storage, subs t i tu t ion  of 
the analyt ic  solutions f o r  t he  numerical solutions i n  the  coast  region w i l l  permit 
the treatment of many of these d i f f i c u l t  cases within the  confines of  core storage. 

Consequently, while t he  great  majority of these cases cannot be 

Analytic Solution of the Equations of Motion 

L e t  the two switching times with a coast between them be T, and T2. The 
v,, pl ,  p",) completely determine these same 

4 4 -  

s t a t e  and primervector a t  T, ( r  
quant i t ies  a t  T, (?2, v,, pa,  pa)  through the analyt ic  solutions of the equations 
of motion and the Euler-Lagrange equations over the coasting a rc .  
three components of the posi t ion,  velocity,  the primer vectors, the  time 
derivative of the primer vector, and the time, there  are th i r teen  quant i t ies  t o  
be related across the  coast period. The same number of equations is  needed f o r  
the analyt ic  solutions.  

-+ -+ 1?' 

Including the 

The f i r s t  six equations re la t ing  the s t a t e s  a t  TI and T2 a re  provided by 
Ref. VIII-6 i n  the form of the  two vector equations, 

and 

where 

( VIII-60) 

( VIII-61) 
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D2pending upon the t o t a l  energy, the  switching times are related by one of 
the following two equations. 

( VIII-62) 

( VIII-63) 

where 

and 

(VIII-64) 

Equations VIII-62 and VIII-63 are  applicable f o r  e < 1 and e > 1 respectively. 

Analytic Solution of the  Euler-Lagrange Equations 

The primer vector solution i s  taken from Ref. VIII-5. I n  addition t o  a and e, 
a number of other auxi l iary parameters a re  employed i n  expressing the solution but 
a l l  of these parameters are d i r ec t ly  expressible in  terms of 3 ,  vl r,, and v2. 

-3 4 - 3  -3 

These additional auxi l ia ry  parameters a re  0, I, w, f, , f, . Fi r s t ,  it i s  
shown how each is  expressible exlusively i n  terms o f  the s t a t e  a t  T1 and T2. 
Define a uni t  vector normal t o  the plane of the coasting arc .  

- r, x r2 n =  
rl r2 

( VIII-66) 
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3 3  

Then cos I = n . k (1st quadrant) 
3 3 

Let n '  be the projection of n on the x-y plane. 

9 -  2 
n = i n x +  j ny 

Then f o r  the longitude of the  ascending node, 

and 

The t rue  anomalies a t  the switching times TI add T, a r e  given by 

1?x-?12 I cosf, = - - - cos f, = - - -' 
II e 

1 < x q 2  I 
e r2 e e 

( VIII-67) 

( VIII-68) 

( VIII-69) 

(VIII-70) 

( VIII-71) 

where r, v are vectors a t  the respective switching points .  

In Ref. V I I I - 5 ,  Lawden gives the following analyt ic  solut ion f o r  the primer 
vector over a coasting arc .  

A (D - A s i n f  ) s i n  f p ' =  A - B s i n f  + C ( I 1 c o s f  - 1 2 ) s i n F  - B(e + c o s f )  
I + COSF 

( D  - A s i n f  ) c o s f  E c o s f  + Fs in f  
I + e c o s f  I + ecosf i- C ( I I  s i n 2 f  + 12)cos f  -I- 

(VIII-72) 
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where I, and 1, a r e  defined below. 

cot - f - 6e2 t a i l (  tan $) f I II I tan - - 
2(1 --e2) 2 2(1 + e )  2 ( I  - e 2 F 2  I + @  

i ( e  I )  
+ e3 . sin f 

(I + e2)2 I + e cos f 

f I f 6 Q2 t a n h - l ( J g  tan 4 ) tan- - 
e +  I 5/2 

cot - - I I1 = 
2(e2- I )  2 2 ( e  + I) 2 (e2 - I )  

; ( e  ' I )  (VIII-74) + e3 sin f 
(e2+ I ) 2  I + ecos f  

I f + - I tan 3 f  - + - 3 tan- f - - I cot - ; ( e  = I )  (VIII-75) - tan - 
40 2 8 2 8 2 0 2 

cot f + ( I tecos f  II ; ( e  f 0 )  
e ( i  + ecosf ) 12 = ( VIII-76) 

In Eq. VIII-72, A through F a r e  constants of integrat ion t o  be determined 
by boundary conditions. 
constants since w h a t  is  required is an expression r e l a t ing  the primer vectors at  
T, w i t h  that  at  T2 of the same coasting arc.  

Actually it i s  not necessary t o  determine any of these 

-+ 
The components of p '  i n  Eq. VIII-72 a re  referred t o  a coordinate system where 

the x and y axes a re  i n  the plane of the coasting a rc  and the x axis is  i n  the 
direct ion of the perihelion. 
vector i s  expressed i n  the standard frame with the x axis i n  the direct ion of the 

Since, i n  the Newton-Raphson algorithm, the primer 

VIII-26 
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vernal equinox and the  z axis perpendicular t o  e c l i p t i c  plane, it is necessary 
t o  transform p in to  t h i s  system. 
matrices are defined. 

For t h i s  purpose the following three ro ta t ion  

(cosw -sinw :) 
0 0 I 

Q ZE sinw cosw 

I 0 

0 cos I -sin I 
0 sin I cos I 

COSR -sinR 
s E sinR COSR o 

( 0  0 

4 

P = QRST 

( V I I I - 7 8 )  

( VIII-80) 

Now, i n  order to r e l a t e  the primer vector a t  TI with the  same a t  T,, it is 
necessary to solve Eq. V I I I - 7 2  and i ts  time der ivat ive for the 6-dimensional column 
vector of integrat ion constants. To f a c i l i k a t e  t h i s  operation the following matrix 
elements are defined. 

s in*  f 
1 + e cos f a,, (7,;) = 1 + ( VIII-81) 

V I I I - 2 7  
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aI2 = -sin f 

sin f 
*14 = I + ecosf 

a i 5 =  a16 = o 

sinf cosf 
I + e m f  a21 = - 

a 2 2  e + COS f 

a23 = sin2f I, ( f  + cosf I,(f) 

a Z 4  COS f 
I + ecosf 

a25  = a26 = 0 

(VIII-82) 

(VIII-83) 

(VIII-84) 

(~111-85) 

( VIII-86) 

( VIII-87) 

( VIII-88) 

( VIII-89) 

(VIII-go) 

VIII-28 



031 = a32 = a33 = a34 o 

cos f 
= i + e c o i f  

s i n f  
= i + e c o s f  

1 Z s i n f c o s f  - e s i n s f  
I + e c o s f  (I + e c o s f ) *  

a45 = a46 = o 

VIII-29 

( V I I I - 9 1 )  

( VIII-92) 

(VI=-93) 

(VIII-94) 

(VIII-95 1 

( VIII-96) 

( VIII-98) 
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a -  

I r , x v l  . 
sinf  - -  

a52 - r2 
( V I I I - l o o )  

2 f T I  + s i n 2 f  - dII - s i n f  12 + cosf  - d12] ( V I I I - 1 0 1 )  
a53 = r2 df d f  

I? XTI sin f 
r2 ( I + e cos fP  a54= - 

a55=  a56= 0 

o~~ = a62 = aG3 = aG4 = o 

e -C cosf 
'66' ITXTj] 

( V I I I - 1 0 2 )  

( V I I I - 1 0 3 )  

( V I I I - 1 0 4 )  

( V I I I -  10 5 ) 

( VIII-106) 

V I I I - 3 0  



These elements a1 define a 6 x 6 matrix. 

N =  (a i j )  ( i , j  = 1,2, . . . . ,  6) ( V I I I - 1 0 7 )  

3 4 

If fur ther  the six-dimensional column vectors P and C a r e  defined by 

then, 

( V I I I -  108) 

( VIII-109) 

Since the matrices Q, R, and S, given i n  Eqs. V I I I - 7 7  t o  V I I I - 7 9 ,  do not depend 
on time, d i f fe ren t ia t ing  Eq. ~111~80 simply gives 

i 
p = Q R S $ '  

Equations VIII-80 and V I I I - 1 1 0  are both expressed by 

-/ -3. 

P =  M P  

where M i s  a 6 x 6 matrix defined by 

( V I I I - 1 1 0 )  

( V I I I - 1 1 1 )  

( V I I I - 1 1 2 )  
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4 

U b i n a t i n g  P '  between Eqs. VIII-lo9 and V I I I - 1 1 1  gives 

( VIII-113) A 

P = M N ?  

Equation VIII-113 is a function of t i m e  which can be wri t ten for t he  two 
switching times T, and T, 

2 

P(T$ = MN(T,)? ( VIII-1.14 j 

A 

P(TJ = M N ( T ~ ) ~  ( VIII-115 j 

Note t h a t  the  6 x 6 matrix M and the  six-d&mensional column vector of integration 
constants C are independent of time. Now,C can be $liminated between Eq. VIII-14 
and V I I I - 1 1 5  giving the  re la t ion  between P( TI 1 and P( T,) t h a t  is sought. 

( VIII- 116) 

Both of the  6 x 6 matrices M and N can be eas i ly  inverted symbolically using 
framer's ru le  o r  Gaussian elimination. 

The 13 equations t h a t  must be sa t i s f i ed  across a coast period a re  Eqs. 
VIII-60, -61, -62, and VIII-116. 
as the  numerical solut ion of the equations of motion and the  Euler-Lagrange 
equations. 

These 13 equations provide the same information 
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Section V I 1 1  Nomenclature 

Matrix elements of ro ta t ion  matrix 

Rotation matrix 

Matrix elements defined by Eqs . ( VIII-36) through (VIII-44) 

A 

C Exhaust veloci ty  

Eccentricity 

Function defined by Eq. (VIII-52) 

e 

F 

i 

g Planetary posi t ion vector 

Function defined by Eq. (VIII-53)  G 

Variational Hamiltonian 

Arbitrary eonstant and also used as defined following Eq. (VIII-46) 

H 

K 

Mass 

Primer vector = AS 

Radius 

A4 

16 

m 

- 
P 

r 

Periplanet radius 

Time t 

Specific instant  of  time T 

- 
v Velocity vector 

Hyperbolic excess velocity vector 

Posit ion coordinate X 

Objective function Z 

Powerplant specif ic  mass 
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Y 

PF 

PS 

Pw 

P S  

PP 

X 

?J 

Section VIII Nomenclature (contd. ) 

Switching function defined by Eq. VIII-8 

Small change i n  time used i n  l i m i t  as G * 0 

Thrustor eff ic iency (function of exhaust velocity) 

Standard Euler angle 

Rotation angle of V, 
- 

Adjoint variable ( i  = I,. . . 6 ) ,  adjoint  variable or mass r a t i o  

Mass r a t i o  defined by Eq. (VIII-2) 

Thrustor r a t i o  ( i n  the  sense of Eq. VIII-2) 

Intermediate payload r a t i o  

Structure r a t i o  

Powerplant mass rat i o  

Gravitational constant of the sun 

Gravitational constant of planet 

Standard Euler angle 

Trace of ro ta t ion  matrix 

Standard Euler angle 
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APPENDIX A - PART 1 

THE CALCULUS OF VARIATIONS APPLIED TO LOW-T3€RUST 

TRAJECTORY OPI?IMIZATION 

The objective of low-thrust propulsion system and t ra jec tory  optimization is 
generally t o  maximize tha t  par t  of the f i n a l  mass of the spacecraft defined as 
useful payload for a given mission (defined mathematically be a set of boundary 
conditions on position, velocity, and time). 
specified, and only the t ra jec tory  and control are t o  be optimized, the objective 
function i s  generally chosen t o  be maximum f i n a l  mass. 

If the propulsion system i s  

Derivation of the Rocket Equation 

The power l imited constraint  specif ies  t h a t  the power i n  the exhaust beam 
sha l l  not exceed the  power available, that is  

TCP< - - - t i l C  1 2  
2 

It has been demonstrated t h a t  on2 always wants t o  use a l l  of the power available 
s o  the  equality of Eq. ( A - 1 )  must be used ( R e f .  A-1). 
given by 

The thrus t  acceleration i s  

Eliminating the exhaust velocity between E q s .  (A-1) and (A-2) one obtains 

and integrating from i n i t i a l  t o  f i n a l  t i m e  gives the f i n a l  mass. 

A-1 
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The f i n a l  mass i s  maximized i f  the in t eg ra l  i n  Eq. (A-4 )  i s  minimized. 
problem of Lagrange i n  the calculus of variations,  and is  the most convenient way 
t o  express the completely unconstrained problem. When constraints a r e  imposed on 
the th rus t  (magnitude and/or direct ion) ,  however, it proves t o  be more convenient 
t o  express the problem in the myer  form where it i s  desired t o  extremize a given 
function of the endpoints. 
Mayer problem by introducing an auxi l iary s t a t e  variable.  

This i s  the 

The Lagrange problem can always be transformed i n t o  the 

For example, the Lagrange problem of Eq. (A-4) i s  t o  minimize the functional 

Introducing a new s t a t e  variable,z , sat isfying the constraint ,  

(A-5) 

then the new functional i s  

which i s  a function of the endpoints and therefore i n  the Mayer form. 
surprising t o  f ind that  

It is  not 

i .e. ,  the new s t a t e  variable z i s  j u s t  the instantaneous reciprocal mass of the 
vehicle. 

The Lagrange Problem 

The basic problem of the  calculus of variations is the Lagrange problem of 
determining n s t a t e  Functions xi ( t ) ,  ( I  = 1,. . .,n) which must take on cer ta in  
prescribed boundary values a t  say t = 0 an2 t = T, such tha t  the functional, 

A-2 



i s  s ta t ionary.  I n  other words, f ind a path through phase space, 
weak var ia t ions about the path produce only higher-order changes 
I. 

xi (t), such tha t  
i n  the functional, 

These weak variations of the functions xi ( t)  are  denoted parametrically as 
follows : 

( A-10 ) 

where the x i  (0 , t )  a r e  by def in i t ion  the functions which render I stationary,  the 
ai are  a s e t  of parameters, and t h e q i  ( t )  a re  a s e t  of a rb i t r a ry  functions which 
vanish a t  the endpoints 0 and T. The case where t h i s  r e s t r i c t i o n  is removed w i l l  
be t reated l a t e r .  
useful where the &xi are called the var ia t ions i n  the functions xi (t). 

The shorthand notation, 6 x i  = ?1 ( t )  dai and 6Gi = fi i ( t )  d a i  is  

I f  the functional I i s  stationary,  

and 

(A-12 

The first set of terms i n  the in t eg ra l  of Eq. (A-13) can be integrated by par t s .  
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(A-14) 

The first term on the r igh t  of Eq. (A-14)  vanishes because the var ia t ions vanish a t  
the endpoints. 
gives 

Substi tuting Eq. (A-14) back i n t o  Eq. (A-13) and multiplying by -1 

Since the var ia t ions 6xi are a l l  independent and arb i t ra ry ,  the only way Eq. (A-15) 
can be sa t i s f i ed  i s  for each coefficient t o  vanish separately. 

= 0 ( i =  I , .  . . .,n) aF 
dt dxi 

( A-16) 

The n Eqs. (A-16) are the Euler-Lagrange equations which, together wlth the 
2n boundary conditions, define a path through phase space which renders the 
functional I stat ionary.  
higher-order derivatives such a$ ;i, the  same techniques of successive integrat ion 
by par t s  may be used t o  derive the corresponding form of the Ner-Lagrange 
equations. Alternatively Eqs. (A-16) may s t i l l  be used i f  new s t a t e  variables a re  
defined (e.  z gi) which limit the derivatives i n  F t o  first order. 

Incidentally,  i f  the integrand F i n  Eq. (A-9) contains 

3 

Is operime t r i c  Problems 

More complicated problems a r i s e  when constraints are  imposed on the s t a t e  
variables.  One of the simplest forms of constraint  arises i n  the so-called 
isoperimetric problems. An example would be t o  find the form of a planar closed 
curve of given length which encloses maximum area. I n  the f i e l d  of low-thrust 
t ra jec tory  optimization, another example would be t o  find the t r a j ec to ry  between 
two s e t s  of boundary conditions which minimizes the t r i p  time while maintaining 
the in t eg ra l  J = s', a2 d t  equal t o  a given constant. 

The isoperimetric problem i s  s ta ted  formally as  foUows. Find n flmctions 
xi ( t)  subject t o  2n boundary conditions such tha t  

(A-17) 
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i s  s ta t ionary subject t o  the constraint ,  

T 
J = J G ( X i  , x i ,  t )  dt = CONSTANT 

0 

and since J must be constant regardless of the variations xi, 

(A-18) 

(A-20)  

The variations 6xi are not completely a rb i t ra ry  as before since the functions 
xi cannot be varied so  as t o  violate  Eq. (A-20) .  
Eq. ( A - l g ) ,  therefore, cannot be s e t  separately equal t o  zero. 

The coefficients of t h e  6 x i  i n  

Consider t h e  Hi lber t  space ( i .e . ,  function space) defined by t h e  i n f i n i t e  s e t  
of a l l  functions of t defined on the in te rva l  0 t o  T and which have homogeneous 
boundary conditions a t  the endpoints. The functions 

dF d dF 
dxi dt ( dxi ) f i ( t )  = - - - - 

and 

are a l l  members of t h i s  Hilbert space. 
notation i s  defined. 

For brevi ty  the following inner product 

(A-21) 

Now, interchanging the integrat ion and summation operations, Eqs. (A-19)  and (A-20) 
can be rewrit ten as follows. 

(A-22 ) 
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(A-23)  

Although the variations 6xi are not completely a rb i t r a ry  as before, they are s t i l l  
independent (i .e ., 6 xi can be changed independently of 6 x j  ) . 
(A-22)  and (A-23)  t o  be sa t i s f ied ,  each term i n  the sums must vanish separately. 
There fo r  e 

I n  order fo r  Eqs . 

(fi 1 a x i )  = o ( i =  1 ) .  . .In) 
(A-24)  

Equations (A-25)  show tha t  6xi i s  any function orthogonal t o  g i .  But Eqs . 
(A-24)  show tha t  f .  i s  a l so  orthogonal t o  6xi. 
re la ted by a constanth . 

Therefore fi and gi must be 
1 

f i  + xgi = 0 

or 

Equations (A-27) ,  along with the constraint  Eq. 
determine the functions xi ( t )  and the constant 

( A-26) 

= 0 ( i = i ,  . . . ) n )  (A-27 ) 

(A-18) and the boundary conditions, 
value of the Lagrange multiplier 

which makes I stat ionary subject t o  the constraint .  
extend t h i s  derivation t o  the case of q constraints ( q  < n) .  

It is  straight-forward t o  
In  t h i s  case the 

function i n  the Euler-Lagrange equations would be 9 
F + X j  G j  

j -  I 

Different ia l  Constraints 

Problems with d i f f e ren t i a l  constraints most frequently a r i s e  i n  t ra jec tory  
optimization. 
state functions xi (t), (i = 1 ,..., n)  and m control functions Uk, ( k  = 1, ..., m) 
which must s a t i s fy  cer ta in  d i f f e ren t i a l  constraints (equations of motion), 

The typ ica l  problem is s ta ted  formally as follows. Determine n 
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+ j ( x i , ~ i , ~ k , t )  = O  ( j = i  , . . . ,  p < n t m )  

and cer ta in  prescribed boundary condftions, 

such that  the functional, 

- r  
I = F ( x i ,  x i ,  uk, t )  dt  

0 

( A-28 ) 

(A-30 ) 

is  stationary.  

If any of the d i f fe ren t ia l  constraints,  Eq. ( ~ - 2 8 ) ,  contain higher-order 
derivatives,  the system can always be reduced t o  f irst  order by defining new s t a t e  
variables with fur ther  constraints of the form @ =  Si - xi+c = 0. 
l e t  it be assumed tha t  the boundary conditions are  given as fixed numbers ra ther  
than the more general case represented by Eqs.  (A-29). The general case w i l l  be 
treated later.  

For the present, 

The control variables are treated as additional state variables mathematically. 
I n  fac t ,  the only thing t h a t  dist inguishes them from state variables i s  t h a t  t i m e  
derivatives of the control variables generally do not appear, although t h i s  would 
be perfect ly  acceptable. I n  the derivation t o  follow, therefore, the notationuk 
distinguishing control variables will be suppressed, and both control and state 
variables w i l l  be denoted by X i  ( t ), (i = 1, . .,n+m) . 

I f  the d i f f e r e n t i a l  constraints (Eqs .  (A-28)) are t o  be maintained, the@ j 
must not change a t  any point i n  time w i t h  variations i n  the state functions. 

(A-31) 

There exists a unique set of flmctions of time, h j ( t )  ( j  = 1, ...,p) called adjoint  
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variables such tha t  the functional, 

has a s ta t ionary value subject t o  no constraints for  t he  same set of flnnctions 
x i (o , t )  which make I stat lonary subject t o  the set  of d i f f e r e n t i a l  constraints of 
Eqs . (A-28). 

A p a r t i a l  proof of this  statement follows. For s ta t ionary J 

The second in t eg ra l  of Eq. (A-33) i s  zero due t o  the f a c t  t h a t  every in tegra l  i n  
the sum contains 6$ 
of Eq. (A-33) i s  a l so  zero. 
o r ig ina l  functional 6 I, and the proposition i s  proved. The var ia t ion of Eq. (A-32) 
vanishing subject t o  no constraints along with the  p d i f f e r e n t i a l  equations of Eqs. 
(A-28) determine the  n state functions x i (  t )  and the p adjoint  functions 
which make I stat ionary subject t o  the constraints.  Note tha t  the above proof did 
not es tabl ish the exlstence or the  uniqueness of the h j ( t ) .  Existence and 
uniqueness, however, may be implied by the f ac t  that the problem has a solut ion i n  
the loca l  sense. 
generally obtained, however, so tha t  i n  t h i s  large sense the j ( t )  are not unique. 

which i s  zero from Eq. (A-31) .  Therefore, the f i rs t  in tegra l  j 
But it w i l l  be recognized as the var ia t ion of the 

j ( t  ) 

Multiple s ta t ionary solutions which a re  not neighboring are 

The Euler-Lagrange equations for  t h i s  problem are now obtained exactly as 
Define the var ia t ional  Lagrangian ( a l so  called the  fundamental or before. 

augmented function) t o  be the integrand of Eq. (A-32) .  

T 

0 
Then the Euler-Lagrange equations are obtained from 6 J = 6[ L d t  = 0 i n  the same 
way as was demonstrated f o r  the unconstrained problem. 
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(A-35 

I n  the case of a control variable wh6se time derivative (generally) does not 
appear i n  the Lagrangian, aL/aak = 0 and 

(A-36 

Hamilton's Canonical Equations 

As i n  c l a s s i ca l  mechanics, it i s  often more convenient and advantageous t o  
work with a formulation that is  independent of the ve loc i t ies .  
c l a s s i ca l  mechanics, a Legendre transformation may be performed on L (i$, xi, pk, 

independent of the veloci t ies ,  jri (Ref. 8) .  

Analogous t o  

j ,  t )  t o  obtain the var ia t iona l  Hamiltonian, H (xi, h 1, uk, t), which i s  

(A-37) 

Hamilton's canonical equations, which replace the Ner-Lagrange equations i n  the 
new formulation, can be derived from the former as follows. Define a new adjoint  
variable conjugate t o  the s t a t e  variable xi. 

aL xi = - 
dici (A-38  

If the d i f f e ren t i a l  constraints,  Eqs. (~-28) ,  can be put i n t o  the form xi = 
f i (Gj ,  uk, t),then the adjoint  variables of the Hamiltonian formd-ation, hi ,  w i l l  be 
the same as those i n  the Lagrangian, 1 3 ,  otherwise not. 

I n  e i ther  case the var ia t ional  Hamiltonian may be rewritten, 

The t o t a l  d i f f e r e n t i a l  of H can be writ ten 
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f'unctional form of H and the second from the def in i t ion  of H, Eq, (A-39). 

dH d t  dH n 

i=i xi  a xi k=l  a u k  dH = 1 [ F d x i +  &. d+] + 1 - duk+ a t  ( A-40 ) 

As a consequence of the def in i t ion  of the conjugate adjoint  variables,h 
f irst  and th i rd  sets of terms i n  Eq. (A-41) cancel. 

the 

Also, using the Euler-Lagrange equations (Eqs . (A-35)), 

Equation (A-41) can now be rewrit ten.  

(A-42 ) 

Now since H (x i ,  h i, uk, t )  i s  a unique f'unction of i t s  independent variables it 
must vary i n  a unique manner with changes i n  these variables.  
Eqs. (A&) and (A&), the coeff ic ients  of each independent d i f f e r e n t i a l  may be 
equated. 

Therefore, comparing 

( i = i l . .  .,n) a H  i.= -- 
I dxi 

( A-46) 
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(A-47) 

'dH dL 
(A-48 ) 

- = -  
a t  a t  

Equations (A-45) through (A-4-8) are Hamilton's canonical equations and supply the 
same necessary conditions as the Euler-Lagrange equations. 

F i r s t  In tegra l  

When the var ia t ional  Lagragian i s  formally independent of the t i m e  (autonomous 
system) there ex i s t s  a first in tegra l  which is  a constant of the motion. 
c l a s s i ca l  mechanics t h i s  f i rs t  in tegra l  is  the t o t a l  energy. 

I n  

a L  a L  The p a r t i a l  der ivat ive = L (?$ = 0, since L i s  independent of i k ,  and = 0, auk d t  auk 
since the var ia t ional  Lagrangian does not contain the time. 

Lagrange equations again, %! = d, (& ), Eq. (A-49 becomes 
2x1 d t  

Using the E u l e r -  

But the quantity i n  the bracket of Eq. (A-52), i s  the var ia t ional  Hamiltonian. 

A - 1 1  



F-91035243 

Theref ore, 

- dH = 0 ;  H = CONSTANT d t  04-53] 

that  is, the Hamiltonian i s  constant i n  time. 
control must always be chosen such t h a t  this  constant of the motion I s  an extremum. 
The pontryagin maximum principle  asserts t h a t  H must always be maximized i f  the 
flxnctional i s  t o  be minimized. Of course, i f  H contains time expl ic i t ly ,  it is  no 
longer a constant of the motion. 

Equation (A-47) shows tha t  the 

Transversali ty Conditions 

A t  each endpoint, n, boundary values must be given corresponding t o  the n 
s t a t e  variables.  Sometimes not a l l  of these values a re  specified,  but the boundary 
values of one o r  more of the s t a t e  variables a re  constrained t o  l i e  on a surface or 
curve as given by Eqs . (A@), 
of freedom and the boundary values can be optimrlzed with respect t o  the functional 
i n  question. 

I n  these cases the problem has addi t ional  degrees 

Assuming t h i s  new generali ty,  l e t  us again develop the necessary conditions 
fo r  the Lagrange problem with d i f f e ren t i a l  constraints from the point where J i s  
s ta ted  t o  be s ta t ionary.  

(A-54) 

where the endpoints t i  and t 2  a re  no longer fixed and the boundary values of the 
s t a t e  functions x i ( t )  a re  prescribed t o  l i e  on cer ta in  hypersurfaces i n  phase space 
and time given by Eqs .  (A-29). To simplify matters l e t  us again suppress the 
separate notation fo r  the control variables uk and regard these as  addi t ional  s t a t e  
variables xi, (i = n+l,. ..., n+m). 

For purposes of  c l a r i t y ,  it i s  a l so  advisable t o  abandon the var ia t iona l  
notation and return t o  the or ig ina l  parametric representation of Eqs. (A-10)  and 
(A-11)  

(A-10)  

( A-11 ) 
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I n  th i s  more general case the  variations 6 xi =da 
functions throughout but  a l so  change the endpoint times tl and t2 .  
endpoint constraints,  

(t ) not only change the s t a t e  
Because of the 

wn ( X i ,  x i ,  t,) = 0 

wa ( X i ,  x i ,  t2) = 0 
( J ? = l ,  . . . ,  n )  (A-29 1 

when x i  and x i  change, tl and t 2  mst a l so  change t o  preserve the equal i t ies  of 
Eqs. (A-29). 
of the variation parameters Cy i 

Therefore, the endpoint times tl  and t 2  can be regarded as functions 

The s ta t ionary qual i ty  of J i s  denoted parametrically by 

(A-55) 

where t( ai) means t ( C r l ,  9, . . . ,an+,). 

Performing the d i f f e r e n t i a l  indicated by Eq. (A-55) gives 

and 

The integrands of the last term of Eq. (A-57) w i l l  be recognized as the 
lefthand s ide of the Euler-Lagrange equations for  problems with fixed endpoints. 
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It can be argued, however, that the same Euler-Lagrange equations are val id  for  
variable endpoints as well. 
endpoints can be fixed a t  t h e i r  optimum values. 
again as a fixed-endpoint problem one would not expect the character of +he 
solution t o  change. 
same s e t  of d i f f e r e n t i a l  equations, namely the Euler-Lagrange equations of Eqs. 
(A-35). The las t  term of Eq. (A-57), therefore,  i s  zero and Eq. (A-57) becomes 

Once the variable-endpoint problem has been solved the 
If the problem were then solved 

Therefore, the s t a t e  functions i n  each case must s a t i s f y  the 

(A-58) 

For subs t i tu t ion  i n t o  Eq. (~-58), the d i f f e r e n t i a l  of Eq. (A-10)  i s  now taken 
and rearranged. 

(A-59) 

Equation (A-59 i s  now subst i tuted i n t o  Eq. (~-58), and using the f ac t  t h a t  

n+m a t  
d t  = c - dai, Eq. (A-58) becomes i = l a Q i  

( A-60 ) 

Equation (A-60) i s  the general t ransversa l i ty  condition f o r  the Lagrange problem. 
The d t  and the dxi  a t  points 1 and 2 represent variations i n  the time and the s t a t e  
variables a t  the endpoints. 
re la ted by the Eqs. (A-29). 
i n  Eq. (A-60) can be reduced t o  a smaller s e t  of independent var ia t ions.  
order for  the t ransversa l i ty  condition, Eq. (A-60), t o  be sa t i s f i ed ,  the coeff i -  
c ients  of each of these independent var ia t ions must vanish. The resu l t ing  
equations supply the necessary conditions fo r  optimality of the variable boundary 
values. 
boundary value i s  specified, i s  zero, and the coeff ic ient  of dxi does not have t o  
vanish. 

These a re  not a l l  independent, however, but are  
Through these equations the set of variations d t ,  dxi 

Then, i n  

Incidently, the variation, dxi,  of any s t a t e  variable fo r  which a fixed 
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A brief illustration of why Eq. (A&) is called a transversality condition 
may be useful. Consider the simple problem of finding the shortest path between a 
point and an infinite plane. It is known, of course, that the path is a 
perpendicular straight line between the point and the plane. If this problem were 
solved by calculus of variations, with the final point variable but constrained to 
lie on the plane, the Euler-Lagrange equations would admit a straight line solution 
while Eq. (A-60) would indicate that the path should be perpendicular (or trans- 
verse) to the plane at the final boundary. 
for more complicated hypersurfaces. 

The same thing is true mathematically 

In the Hamiltonian formulation the transversality condition assumes a very 
simple form. 
the Hamiltonian, and the coefficients of the dxi are just the adjoint variables, 
xi, which are conjugate to the respective state variables xi. 
of the transversality condition is thus 

The coefficient of dt in Eq. (A-60) is recognized as the negative of 

The Hamiltonian form 

(A-6 1) 

Weierstrass-Erdmann Corner Conditions 

It may be that one or more of the state functions (or their time derivatives) 
which comprise an eldremizing path undergo a finite number of discontinuities. The 
points at which these discontinuities occur are called corner points, and at corner 
points the Weierstrass-Erdmann corner conditions must be satisfied. By treating 
the corner points as internal boundaries where the two adjacent solutions must be 
matched, the corner conditions may be simply derived by using the development just 
presented for transversality conditions. 

To be specific, consider the case where two corner points occur. The times 
of occurrence, TI and T2, depend of course on the path chosen which is again 
represented parametrically by Eqs . (A-10) and (A-11). 
functions of the nizn parameters Cy i. 
as the sum of three integrals 

Therefore, T i  and T2 are 
The functional J, Eq. (A-32), can be rewritten 

(A-32) 
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Again fo r  s ta t ionary J, 

(A- 55) 

Employing the same process as t h a t  of Eqs . (A-55) through (A-61) on Eq. (A-32) 
above, one obtains 

Since there  are generally no relationships between the variations a t  the end- 
points and those a t  the corner points, the two terms at 0 and T can be separated 
from the rest of Eq. (A-62) and must vanish independently, giving the previously 
derived general t ransversal i ty  condition, Eq. (A-61). 
of the respective corner points must be equal, i .e. ,  dt(T1-€) = dt(Tl+€) ,  dxi(T1-€) 
= dxi(T1+e) and s imilar ly  a t  T2. 

The variations on each s ide 

Therefore, Eq. (A-62) can be rearranged t o  give 

(A-63) 

Since no re la t ion  ex is t s  between the variations a t  T1 and T2, the two terms must 
separately vanish. Also since the variations on each s ide  of the respective corner 
points are  equal the respective coefficients must a l so  be equal i n  order t o  s a t i s f y  
Eq. (A-63). 
s imilar ly  at  T2. 
continuous const i tutes  the Weierstrass-Erdmann corner conditions. The extension 
t o  more than two corner points i s  obvious. 

Thus H(T1-€) = H(Tl+€) ,  Ai(T1-€) =Xi(T1+€),  (i = 1, ..., n+m) and 
The f ac t  t h a t  the Hamiltonian and a l l  adjoint  variables are  

The Pontryagin Maximum Principle 

Two things tha t  cause corner points are inequality constraints and d iscre te  
control variables.  Only the l a t t e r  are considered i n  t h i s  report .  Consider the 
case where a cer ta in  control variable uk is not continuous but may take on any one 
of a f i n i t e  s e t  of d i scre te  values i s .  
proper choice for Uk a t  any time i s  

According t o  the maximum principle  the 
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uk = max H ( xi ,  x i ,  kS, t 1 
S 

( A-64) 

that is, the  d iscre te  value 4 which maximizes H a t  any point is the proper choice. 
I n  the l imit ing case of continuous control variables the maximum principle  i s  
consistent with aH/buk = 0 and the posi t ive de f in i t e  t e s t  of the  Weierstrass excess 
function. 

P 

The Problem of Mayer 

Up t o  now the development has centered almost exclusively on the Lagrange 
problem, although it has been shown e a r l i e r  t h a t  the Lagrange problem can be t rans-  
formed in to  a Mayer problem by simply defining a new s t a t e  variable.  
reasonable t o  expect, therefore, that  the same Euler-Lagrange equations w i l l  be 
val id  for  the Mayer problem. 

It is  

That the same Euler-Lagrange equations are,  i n  fac t ,  valid for  the Mayer 
problem i s  now shown. 
the functional 

S ta r t ing  with the or ig ina l  Lagrange problem of extremizing 

T 
I = F ( X i ,  x i ,  t )  d t  ( i = 1 ,  . . . , n + m) 

0 

subject t o  the d i f f e r e n t i a l  constraints 

+j ( x i ,  x i ,  t )  = 0 ( j =  I, . . , ,  p < n + m )  

a new s t a t e  variable,Z , i s  defined which obeys the new constraint  

Z - F ( X i ,  x i , t )  = 0 

(A-65 ) 

(A-66) 

(A-67) 

Call  the new s t a t e  variable the (n+m+l) variable ( Z  E ~ n + ~ + ~ )  and the addi t ional  
constraint  the (p+l )  constraint ,  G P + l .  

As shown before, the  problem can be transformed in to  the Mayer form, 
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T T 

0 
I = L  i d t  = Z I  (A-68) 

but the  Lagrange form s h a l l  continue t o  be used i n  order t o  make use of previous 
developments. 
the literature. ) 

(Note t h a t  the  new state variable 2 is usually denoted by G o r  J i n  

As before, the var ia t ional  Lagrangian i s  formed. 

Since th i s  i s  s t i l l  a Lagrange problem the same Ner-Lagrange equations hold. 

(A-71 

Inspection of the p+1 constraint ,  Eq. (~-67), and the Lagrangian, Eq. (~-69), 
reveals that  L does not contain 5 so t h a t  the second term i n  Eq. (A-71) is  zero. 
Upon subst i tut ing Eq. (~-69), the first t e r m  becomes 

d 
dt 
- ( I + X P + J  0 

or 

X p + l  = CONSTANT 

(A-72) 

Since neither X nor2  appear i n  any of the other Euler-Lagrange equations 
(Eqs . (A-70) for i 
the equations involving $3 and 1 p+l, Eqs . ( A-67) and (A-72), are completely 
uncoupled from the rest of the system and Eq. (A-73) i s  a t r i v i a l  result. 

n-tm), o r  equations of constraint  (Eqs . (A-66) fo r  j < n-tm), 

With no 
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loss  of generali ty or without changing the problem I n  any way, the constant of 
Eq. (A-73) can be chosen t o  be zero and the 2 can be deleted from the Lagrangian, 

(A-74) 

and the Euler-Lagrange equations fo r  the Mayer problem are Eqs. (A-70) fo r  i = 1, . . .,n+m. 

Using the same transformation device, the general t ransversal i ty  condition for  
the Mayer problem can be derived. Again the Lagrangian i s  used f o r  the corres- 
ponding Lagrange problem, 

where the prime i s  introduced t o  distinguish Eq. (A-75) from the Mayer form of the 
Lagrangian which has been shown t o  be equivalent as far as the Euler-Lagrange 
equations are concerned. Since for  the t i m e  being we are s t i l l  dealing w i t h  a 
Lagrange problem with the functional i n  the form 

(A-76 

where 2 = F(xi, xi, t) ,  the previously derived t ransversal i ty  condition, Eq. (A-63), 
i s  valid.  

(A-77) 

Substi tuting Eq. (A-75) fo r  L’ and denoting the Mayer form of the var ia t ional  
P 

Lagrangian by L = c h j 63, Eq. (A-77) becomes 
j =i 
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Equation (A-78) can be simplified, ($p+l = 0), 

Equation (A-79) is the  general t ransversa l i ty  condition f o r  the Mayer problem. 
Again t h i s  can be transformed i n t o  the Hamiltonian formulation. 

n+rn 2 

i s  I I 
[ d z  - H d t  -t A i d x i ]  = o  (A-80) 

If there ex i s t s  no coupling between 2 and the other s t a t e  v a r i a b l e s , d e  = 0 
separately from the rest of Eq. (A-80). 
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Appendix A Xomenclatnzre - Par t  I 

a 

C 

H 

I, J 

L 

P 

T 

t 

U 

X 

z 

A 

W 

Thrust accelerat ion 

Exhaust veloci ty  

Denote functional forms 

Variational Hamiltonian 

Integral  functional 

Variational Lagrangian (a l so  cal led the augmented or fundamental 
function) 

To ta l  vehicle mass a t  time t 

Power avai lable  

A given in s t an t  of time 

Time 

Control variable 

Posit ion coordinate 

Auxiliary state variable 

Function var ia t ion parameter 

Denotes var ia t ion of function x( t )  

Small quantity used f o r  taking l i m i t s  

Arbitrary function of time 

Thruster power conversion eff ic iency 

Lagrange mult ipl ier  

Denotes functional form of a d i f f e r e n t i a l  equation of constraint  

Denotes functional form of equation that the boundary values 
must s a t i s f y  
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APPEXDIX A - PART 2 

VARIATIONAL FOWLATIONS OF FOUR POWER-LIMITED 
TRAJECTORY AND PROPULSION-SYSTEM OPTIMIZATION PROBLEMS 

Detailed Description of Problems 

The var ia t ional  formulations of the problems are presented i n  the following 
sequence : 

Problem 1: 
constrained t o  constant exhaust velocity on-off operation. The power available i s  
a given function of posit ion and time corresponding t o  decaying radioisotope power 
or solar power. 
powerplant specif ic  weight, powerplant fraction, and exhaust velocity.  The boundary 
conditions correspond t o  (a) planetary rendezvous, (b) planetary flyby, (e)  flyby a t  
a given radius, and (d) o r b i t a l  t ransfer .  

Three-dimensional t ra jec tory  and control  optimization with the thrus te r  

The objective i s  maximum f i n a l  mass f rac t ion  for  given values of 

Problem 2: This problem includes a l l  of problem 1, but  i n  addition the  powerplant 
f ract ion pw and the exhaust velocity C,  as well  as the t ra jec tory  and the associated 
s teer ing program, a re  t o  be optimized. The objective function i s  maximum payload 
fraction, which is  defined t o  be everything t h a t  i s  l e f t  a t  the end of the mission 
except the powerplant, thruster ,  and the  s t ructure .  

Problem 3: 
one a f t e r  the coast period. 
un i t  a re  optimized with respect t o  f i n a l  payload fract ion.  

I n  t h i s  problem two separate propulsion uni t s  are  used, one before and 
The exhaust velocity and powerplant f ract ion of each 

Problem 4: 
acceleration vector i s  constrained t o  make a constant angle with respect t o  the 
radius vector. One constant angle i s  allowed before coast and another after coast .  
These two angles a re  t o  be separately optimized with respect t o  maximum f i n a l  mass. 

This problem is  the same as problem 1 except t h a t  the thrus t -  

Problem 1 

Maximizing the f i n a l  mass fract ion i s  equivalent t o  minimizing the objective 
function 

where K i s  an a rb i t r a ry  posi t ive constant. 
denoted functionally by 

L e t  t he  power i n  the exhaust beam be 

A P = - -  I mc * 2  = qc ~ , f ( r , t )  
2 (A-82) 
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where “(7, is the thrus te r  efficiency, Po i s  the power available t o  the thrus te r  a t  
Earth’s o r b i t a l  radius, and f i s  a given posit ive function of posit ion and time. 
The time r a t e  of change of the mass of the  vehicle is given by 

(A-83) 

whereaw i s  the spec i f ic  mass of the powerplant based on the i n i t i a l  power Po. 

The d i f f e r e n t i a l  equations of constraint ,  corresponding t o  Eqs. (~-28) ,  a r e  
now given. 

x i  = X i t 3  ( i =  I ,  2,3) (A-84) 

bcf  X I  x4 = - P(t) sin e COS+ - --+ P 

x2 P(t) sin 8 sin (9 - - bcf x 5  = 7 

P r 3  

xe = - P ( t ) c o s + - r 3  bcf  x 3  

P 

(A-85) 

(A-86) 

(A-87) 

Here, the s t a t e  variables xi ( i  = 1, 2, 3) a re  Cartesian posit ion coordinates, the 
xi+3 are  velocity components, and p is  the vehicle mass; b f 2Tcy/awC2 and the 
control  variables (denoted by uk i n  Appendix A, Part 1) are  e , p , and ’$ (t) . 
l a t t e r  is a discrete  control variable corresponding t o  turning the thrus te r  on and 
o f f .  

The 

1 i n  powered regions 

i n  coasting regions 
P ( t )  = (A-89) 

The second term i n  Eq. (A-88)  describes staging at  time &. 
mass f rac t ion  tha t  is discarded and 6 (t-T*) is  a Dirac de l t a  function. 

I n  t h i s  t e m p *  is  the 
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The variational Hamiltonian (Eq. (A-37)) is now formed. 

(A-90) 

The control variables can be determined in terms of the adjoint variables through 
the use of Eqs .  (A-47) and (A-64). 

Equations (A-91) and (A-92) are satisfied if 

and 

where 

A4 cos+ = +_ 

J- l 

As sin+ = +, 

-./x--z sin,$ = +_ 
P 

c o s 9  = +, - 1 

P 

(A-91) 

(A-92) 

(A-93) 

(A-94) 

Investigation of the Pontryagin maximum principle, Eq. (A-64) 
plus sign should be chosen in Eqs .  (A-93) and (A-94). 

indicates that the 

The variational Hamiltonian, Eq.  (A-90) can now be rewritten in more concise 
notation. 

h 

A-24 



F-9103 52-13 

(A-95) 

When the d iscre te  control  variable /3 (t) changes from 1 t o  0 at a par t icu las  point, 
say T1, the time derivatives of the s t a t e  variables xi+3 (i = 1, 2, 3), i . e . ,  the  
acceleration components, suf fe r  discont inui t ies  as shown by Eqs .  (A-94) t o  (A-98) . 
Thus a corner point occurs at  T1 and the Weierstrass-Erdmann corner conditions 
d i c t a t e  t h a t  the Hamiltonian and a l l  adjoint  variables must be continuous across 
t h i s  point. 
where @ = 1 and (+) j u s t  a f t e r  the corner where /3 = 0, 

Denoting by (-) t he  inf ini tes imal  region j u s t  before the corner point 

Since there i s  no discontinuity i n  any of the s t a t e  variables,  xi, 
a l l  of the adjoint  variables must be continuous, the only way fo r  E;!'? A-96) t o  be 
s a t i s f i e d  i s  fo r  

, and P ,  and 

t o  vanish a t  the corner point.  The f'unction Y is  cal led a switching flmction 
(Ref. A-1) because it governs the  discrete  control  variable /3 as follows. 
seen i n  Eq. (A-95) t ha t  the second term i n  the  Hamiltonian i s  bf BY. 
a posit ive constant and f i s  a posi t ive h c t i o n  of posi t ion and time. 
pr inciple  (Eq. (A-64)) s t a t e s  t h a t  
Hamiltonian. It is qui te  evident t h a t  

It is 
Note tha t  b is 

The maxhum 
should always be chosen t o  maximize the 

(A-98) 

is the  proper choice. 

The Eamiltonian canonical equations (Eqs.  (A-45) and (A-45)) will now be deter-  
mined i n  second-order form except fo r  t ha t  f o r  A,. 

(A-99) 
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dH 
dxi 

= - (A-100) 

(A-101) 

(A-102) 

The three Eqs.  (A-101) and Eq. (A-102) are the complete set  of Euler-Lagrange 
equations. Together with the  equations of motion, 

bcf P X i + 3  
I-L P 13 (i = 1,2,3) , x i  = 

and 

@ = -b fP-p*a( t -T* )  , (A -88) 

and prescribed boundary conditions, they determine the  t ra jec tory  and thrust ing 
program. 
one second-order equation by d i f fe ren t ia t ion  and subst i tut ion.  

The two f i r s t -order  equations, Eqs .  (A-102) and (A-88), can be reduced t o  

There s t i l l  remains the  question of boundary conditions on the  s t a t e  and 

Assuming the  
adjoint variables.  The boundary conditions depend upon the  specif ic  problem at  
hand (i .e. ,  whether it is a, planetary rendezvous, flyby, e tc . )  . 
rendezvous case with a s ingle  intermediate coast, f o r  the moment, the f o l l m i n g  
development indicates a condition on t h e  primer vector magnitude a t  the two in te r -  
mediate switching times, T1 and T2. 

Integrate Eqs. (A-102) and (A-88). 
t t 

(A-104) 

(A-105) 
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Since Eqs. (A-101) and (A-102) are  homogeneous i n  the adjoint  variables,  the 
magnitude of the  primer vector, p, and the  mass adjoint  variableXIJ,, may 'be a rb i -  
t r a r i l y  scaled a t  any point, but not independently. 
P ( T ~ )  = p l 7  e tc .  

I n  what follows l e t  p(T1) = pl, 

X,I = 0 CP, 
PI 

y1  z -- 

y - --A,,, cp 2 = o  ,- ILL2 

(A-106) 

(A-107) 

(A-108) 

fPP 
' 2  

- Apo + b c / F d t  A,,=-- CP2 - 
P2 0 

Since@ (t) = 0, fo r  T1 < t < T2, the in t eg ra l  terms i n  Eqs .  (A-107) and (A-109) a r e  
equal. Therefore, the right-hand s ides  of these two equations a re  iden t i ca l  and 

(A-110) 

If no staging occurs during the coast period ( i . e . ,  i f  p *  = 0), then the primer 
vector magnitudes at the two switching times a re  equal, 
(Ref. A-2) .  

a well known r e s u l t  
If staging does take place, 

PI - PI 
P2 Pi+* 
- - -  (A -111) 

which indicates t h a t  the first switching time would occur e a r l i e r .  The required 
scal ing on hp a t  t = 0 is  given by Eq.  (A-107), 

TI 
- CPI - b c j F d +  f P  b o  = P I  

0 
(A-112) 

with a rb i t r a ry  scaling on p a t  the i n i t i a l  point.  
T1 decreases the scal ing h p  (0) increases. 
i n  time. 
function w i l l  become more negative and the second switching time T2 w i l l  increase. 

Equation (A-112) shaws t h a t  as 
This d i r ec t ly  increases A p  a t  a l l  points 

Equation (A-97) shows t h a t  i f  hp increases everywhere the  switching 
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Thus the  staging during the coast period has the e f f ec t  of increasing the length of 
the coast, which i s  cer ta in ly  reasonable. 

Finally,  the boundary conditions fo r  the four cases must be considered. The 
first case of planetary rendezvous has already been discussed. 
spec i f ic  boundary values are given fo r  the posi t ion vector xi and the veloci ty  
vector f i  at both endpoints. This case usually r e su l t s  i n  one intermediate coast  
period and two switching points, although more than one coast  period is  cer ta in ly  
possible.  
(Eq. (A-88)) requires an addi t ional  6 function term f o r  a l l  staging points.  

For t h i s  case 

In  the l a t t e r  case Eq. (A-110) holds over a l l  coast periods and the  mass 

For the case of planetary flyby the general t ransversa l i ty  condition, 
Eq. (A-80), is  employed. 

The final posi t ion is  fixed (dxi = 0) but the f i n a l  veloci ty  i s  open (dxi+3 f 0) .  
Furthermore, Eq. (A-113) must be val id  f o r  any a rb i t r a ry  s e t  of independent weak 
variations.  !Ibis i s  possible only i f  the coeff ic ient  of each independent var ia t ion  
separately vanishes. 

X,+3(T)  = 0 ( i  = l,2,3) (A-114) 

Equation (A-114) s t a t e s  t ha t  the primer vector a t  f inal  time vanishes, while 
Eq. (A-115)  implies an addi t ional  scaling requirement onh,,, . 
however, t ha t  K i s  an a rb i t r a ry  posi t ive constant, so Eq. (A-115) is  s a t i s f i e d  by 
any posi t ive f i n a l  value of A,,,, a fortunate circumstance since A,,, i s  already corn- 
p le te ly  determined by Eqs .  (A-105) and (A-112). 

It w i l l  be recalled,  

For the flyby case p(T) = 0. Since A,,, is everywhere posit ive,  Eq. (A-97) 
shows that the  switching function, Y , w i l l  go negative and remain negative i n  the 
l a t t e r  par t  of the t ra jec tory .  The f i n a l  par t  of the t ra jectory,  therefore, w i l l  
alwqys be a coasting region f o r  the flyby case. 

In  the case of flyby a t  a given radius, R, the boundary condition corresponding 
t o  a s o l a  probe, the locat ion of the f i n a l  boundary on the sphere of radius R i s  
determined by two variables which a re  most conveniently defined t o  be the usual 
spherical  polar coordinate angles e and 9. 
Cartesian coordinates a re  

I n  terms of these variables,  the 

x ,  R sin8cos 4 (A-116) 
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X 2  = RsinBsin4 (A-117) 

X3 = R COS 8 (A-118) 

The t ransversa l i ty  condition, Eq.  ( A - U 3 ) ,  i s  the same as the previous case 
The except t ha t  the  f inal  posit ion i s  not fixed and the  dxi a re  no longer zero. 

variations are not a l l  independent, however, but a r e  re la ted  through 
Eqs.  (A-116) t o  (A-118). 

dx2  R [cos8 sin + d e  + sin6 cos$d+] (A-120)  

d x 3  : - R  sin6 d 8  (A-121)  

Substi tuting Eqs.  (A-119)  t o  (8-121) i n to  Eq. (A-113) one obtains Eqs .  (A-114) and 
(A-115)  as before, and i n  addition 

( X I c o s 8  c o s + + X 2  cos8 sin+ -A3s in8)d8 +(-X,sinQsin++ X 2  sin 6cos+) d + = O  ( A - l 2 2 )  

Since de and d 'p are  independent variations,  t h e i r  respective coeff ic ients  must 
equal zero. 

X I  cos ++ X 2  sin+ = A3 tan 6 (A -1.23) 

(A - 124) X I  (-sin +)+ ~2 cos+ = 0 

Using Cramer's rule ,  
* 

X 2 =  X 3  tan 8 sin + (A -126) 

Equations (A-125) and (A-126) can be converted back t o  Cartesian coordinates and 
Eqs .  (A-99)  a re  subst i tuted for the A i .  

(A-127)  
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(A-128) 

The final boundary condition on posit ion has three degrees of freedom. 
Equations (A-127) and (A- l28)  provide two conditions. 
vided by 

The t h i r d  condition i s  pro- 

where R is the  given f i n a l  radius.  

For the case of o r b i t a l  t ransfer  i n  a given t i m e ,  it i s  desired t o  depart from 
the bes t  point i n  the  i n i t i a l  o rb i t  and arrive at t h e  bes t  point i n  the  f i n a l  o rb i t .  
A t  each end both the  posit ion and velocity of the given orb i t s  a r e  matched. 

A Keplerian o r b i t  i n  space can be specified by 5 parameters. In  addition, a 
posi t ion i n  the  given o rb i t  is specified by one parameter, the cent ra l  angle 5 .  
Once the  o rb i t  is  specified,  the posi t ion and veloci ty  vectors of a cer ta in  point 
i n  the  o rb i t  are functions of the  s ingle  parameter 5 .  

The general t ransversa l i ty  condition fo r  orbiCal t ransfer  i s  

me variations dS a t  the i n i t i a l  and f i n a l  boundaries a re  completely independent. 
Therefore the  respective coeff ic ients  must vanish separately.  

(A-132) 

(A-133) 

Eqi Ettions (A-132) and (A-133) along w i t h  Eqs.  (A-130) a re  suf f ic ien t  t o  determine 
the  values of i n i t i a l  and f i n a l  5 and thus if X i  and fi. I n  case only one end i s  
open Eqs.  (A-132) and (A-133) a r e  used and a l l  the boundary values on the posit ion 
and veloci ty  vectors must be given for  the other end. 
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Problem 2 

Briefly, t he  only difference between t h i s  and the  last problem is t h a t  nuw two 
constant parameters, the exhaust velocity,  C, and the powerplant fraction,PW , a r e  
t o  be optimized i n  addi t ion t o  the t r a j ec to ry  and thrust ing program, and the pay- 
load fract ion is  t o  be maximized instead of j u s t  the f i n a l  mass. The problem again 
can be most conveniently expressed i n  the  Mayer form w i t h  the objective function. 

t o  be minimized where K is again an a rb i t r a ry  posi t ive constant,% 
f rac t ion  (any continuous function of c a n d P W ) ,  and P, i s  the s t ruc ture  f ract ion.  

is the  thrus te r  

, The d i f f e ren t i a l  constraints,  Eq. (A-28) ,  f o r  th i s  problem a re  

(A-135) 

(A-136)  

(A-137) 

c =  0 (A-138)  

Pw = o  (A-139)  

where the r e su l t s  of Eqs .  (A-93) and (A-94) f o r  the control  variables have already 
been included i n  Eqs.  ( A - 1 3 6 ) .  

The Hamiltonian, Eq. (A-39) ,  can again be wr i t ten  i n  the concise form 

where Y is the same switching function as before. 

(A -140) 

y = -  - Ap 
P 

(A-37) 
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Application of the Pontryagin maximum principle, Eq. (A-56), again shows that 

The Euler-Lagrange equations, 

(A-98) 

(A -141) 

(A-142) 

are the same as the previous problem. 
additional Euler-Lagrange equations for C and v, . 

In this problem, however, there are two 

dH xc  5 -- 
ac 

dH xpw = - -  
d F W  

These equations may be integrated formally. 

(A - 144) 

(A-146) 

The general transversality condition for this problem are 

For the case of fixed-time rendezvous the variations dt, d% and dxi+3 are all zero 
at each end. 
endpoints. 

Let the subscripts 0 and T denote the variation at the respective 
Equation (A-147) can be rewritten as 



F -9103 52 -13 

Equations (A-138)  and (A-139)  insure t h a t  C and pw a re  constant throughout the  
t ra jec tory .  Therefore 

Furthermore, 

(A-150) 

Subst i tut ion of Eqs . ( A - l 4 5 ) ,  (~-146) ,  (A-149) , and (A-150) i n t o  Eq. (A-148) gives 

T T 

and col lect ing coeff ic ients  of independent var ia t ions,  

Each coefficient i n  Eq. (A-152) must vanish separately.  
coeff ic ient  shows t h a t  hwT = K. 
coeff ic ient  one obtains 

The vanishing of the first 
If t h i s  r e l a t ion  i s  subst i tuted in to  the last  

It remains t o  determine the two partial derivatives i n  Eq. (A-153).  

(A-154) 
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Let us define a new variE . &e pc such tha , 

(A-155) 

bc w i l l  be recognized as the r a t e  of mass loss  of the vehicle associated with 
propulsion and not  including the mass loss due t o  staging during coast .  Then 

Naw’the integration indicated i n  Eq. (A-153) can be performed, 

(A-156) 

(A-157) 

and integrating the second term by par ts  gives 

T T .  7 T 

[Pc 1 ] - I P c b d  t (A-158) I 
P W  

P c  cp  = -1% - p - d t  + - 
0 0 0 Pw 0 

Inspection of Eq. (A-142) shows th&t 

(A-159) 

Equation (A-159) is  subst i tuted in to  Eq. (A-158). 

(A -160) 

(A - 16 1) 
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The second equal i ty  of Eq. (A-161) is val id  because from the  staging time T* t o  the 
end of the coast  period T2, F, is  zero, and a f t e r  T2, ic= $ . Equation (A-160) can 
f i n a l l y  be wr i t ten  as 

Turning a t ten t ion  t o  the other partial der ivat ive i n  Eq. (A-153) 

(A-162) 

(A-163) 

(A -164) 

where it i s  assume? tha t  the th rus t e r  efficiency 7, i s  a function of exhaust 
velocity, C, and yc represents d\/dc. 

Equation (A-153) can now be rewrit ten as 
.%- 

T 

awc3 /f [ ( 2 - %) ( Pwrl - h p )  - F] P ( t )  d+} dc 0 
0 

The two variations a re  independent so the coeff ic ient  of each i s  zero. 

(A -166) 

(A-167) 

Equations (A-166) and (A-167) determine the  optimum values of C and p, w i t h  
respect t o  payload fract ion.  Note that Eq. (A-166) depends upon k, the  f rac t ion  
of mass dropped i n  staging. This i s  very reasonable. The more mass that is  dis-  
carded during coast, the l e s s  w i l l  be the propulsion requirement from T2 t o  T and 
the  optimum values of C and p wi.11 go up and down, respectively. 
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The scal ing of the adjoint  variables is  the  same as i n  Problem 1. The primer 
vector magnitude, p, is scaled a r b i t r a r i l y  at  the  i n i t i a l  boundary and the  switching 
times T and T2  must be such t h a t  

PI P2 

PI - P2 
- -  - 

Once again v ( t )  and h p ( t )  can be determined by numerical quadrature. 

+ I 

(A - 110) 

(A-168) 

The scaling on Ap is determined by the f ac t  t h a t  the switching function i s  zero 
a t  t = T1. 

This completes the formulation of Problem 2 fo r  fixed-time 
Combining Eqs.  (A-133) and (~-136), the  equations of motion can 
second-order form of Eqs. (A-103). These equations, along with 

planetary rendezvous. 
be put i n t o  the 
Eq. (~-168), a re  

the equations of motion. The adjoint  equations are  Eqs .  (A-141) and (A-169) .  
Boundary values are given on the  posi t ion and velocity vectors at  both boundaries. 
Optimum values of c and pw are  determined by Eqs .  (A-166) and (A-167). 

For the other cases of planetary flyby, flyby a t  a given radius, and o r b i t a l  
t ransfer  the  t ransversa l i ty  conditions a re  the same as before. 

Problem 3 

I n  t h i s  problem the  staging during coast consists of dropping the  powerplant 
and thrus te r  used during the  i n i t i a l  powered phase as wel l  as the empty propellant 
tank. Since Cwo separate thrusters  and powerplants are used i n  the two powered 
phases, there a re  now four parameters t o  be optimized: pwl ,PM2 , C 1  and C Z .  
subscripts 1 and 2 r e fe r  t o  the f i rs t  and second powered phases, respectively. The 
new objective f'unction is  the f i n a l  payload-plus-structure f ract ion.  

The 
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The rate of mass loss due t o  thrust ing is 

where 

1 for  t c T *  

2 fo r  t > T* 
v = (  

(A-173)  

(A-174)  

The t o t a l  r a t e  of mass loss  due t o  both propulsion and staging is  

The subscripted powerplant specif ic  weight aW i n  Eq. (A-173)  allows for the  
two powerplantsPH1 andpwz being d i f fe ren t  i n  t h i s  respect.  The term %T1 i n  
Eq. (A-175)  represents an empty propellant tank, the mass of which i s  proportional 
t o  the  propellant required for  the first powered phase. 

I n  addition t o  Eq. (A-175) ,  the  other d i f f e r e n t i a l  constraints fo r  t h i s  
problem are 

= - t i c  cu- Xi+3 - 3- 
P P r3 (A-177) 

F W V  = 0 (A-179) 

From Eqs. (A-175) t o  ( A - l g g ) ,  the  var ia t iona l  Hamiltonian, Eq. (A-37) ,  i s  formed. 

(A-180)  
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Except fo r  the new subscripts V the  Euler-Lagrange equations i n  Ai+3 and 1l.l are  
exact ly  the same as i n  Problem 2. 

2Pwu77c2 - P ( 7  df CUP -%) (A -181)  
- r 3  + + E X j + 3  J = I  x j  + awucu2 dxi 

.. 
X i+3  - -- 

(A-182) 

Again the  continuity of the Hamiltonian a t  the corner points T1 and T2 requires 
t h a t  the  switching function 

must vanish a t  these two points.  
s imilar ly  a t  T2, 

Referring t o  conditions a t  T1by subscript  1 and 

(A-1.84) 

(A-185) 

The last term of Eq. (A-187)  is  zero since 
hand sides of Eqs .  (A-185)  and (A-186)  a re  ident ical ,  the left-hand s ides  may be 
equated. 

= 0 for  T1 5 t c T 2 .  Since the r igh t -  

(A-188) 

Equation (A-188) corresponds t o  Eq. (A-110) f o r  problem 1. 
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The Euler-Lagrange equations fo r  C v  and w W v  are  

a H  , Apwv = - - iCV = - - . ac, apwV 
aH 

which can be integrated formally over t h e i r  respective regions. 

(A - 1.89) 

(A -190 

(A-191) 

T 

Xpwz(T)  - Xpwz(TX) = -I -% d t  (A-193) a pW2 
T* 

Regarding T* as an in t e rna l  boundary the general t ransversa l i ty  condition i s  
w r i t  t en  

3 T*-€ 

dZ + [ - H d t  + E  i= I ( A i d x i +  X 1 + 3  dx i ,3 ) ] ;+Xpdp\  0 

(A-194) 

In  the case of fixed-time rendezvous d t  = dxi = dxi+3 = 0 a t  t = 0 and T so 
the second term i n  Eq. (A-194) vanishes. Different ia t ion of Eq. (A-172) gives 

d z  = K(dpwz + h d C 2 +  dpW2 - dpT aCz apWz 
(A-195) 

A t  t = T* the  mass f rac t ion  CL decreases by an amount ( h1 + P F ~  + P*Tl), i . e . ,  
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and 

Subst i tut ion of Eqs. (A-190) t o  (A-195), (A-1971, and (A-198) i n to  the t rans-  
versa l i ty  condition, Eq. (A-194), gives 

(A-199) 

and col lect ing coeff ic ients  of independent variations,  

(A -200) 

The partial derivatives i n  Eq.  (A-200) are  now determined. 

(A -201) 
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where 6,, is the Kronecker de l t a .  

Since the  first term of each of t he  p a r t i a l  derivatives contains @ ,  which is 
zero between T1 and T2, the l i m i t s  on the  in tegra ls  of these terms i n  Eq. (A-200) 
can be changed from 0-T* and T*-T t o  0-TI and T2-T, respectively.  
of the second terms are 

The contributions 

(A-203) 

(A-204) 

Since each of the  var ia t ions of Eq.  (A-200) i s  independent, the coeff ic ient  of each 
var ia t ion must vanish independently. 
t h i s  can be subst i tuted in to  the last term. 
Eq. (A-200) becomes 

The f i r s t  term indicates t h a t  Ap, = K and 
I f  these operations are performed, 

T 

(A-208) 

The four subsidiary conditions, Eqs .  (A-205) t o  (A-208), determine the optimum 
values of the four parameters, Cl, C2, hl, andpwz . 

A -41 



F-9103 52-13 

It i s  in te res t ing  t o  note tha t ,  although a def in i te  time for  discarding the  
i n i t i a l  propulsion system w a s  defined i n  formulating the problem ( i . e . ,  T*), the  
r e su l t s  turn out to be independent of T*. These r e su l t s  are sat isfying from a 
physical point of view since it should not matter where i n  the coast period the  
propulsion system i s  discarded. 

Problem 4 

This problem has been motivated by the desire  to f ind  a prac t ica l  thrust ing 
program fo r  a solar-powered vehicle. 
dimensional analysis i n  Ref. A-3, where the th rus t  vector i s  constrained t o  make a 
constant angle ( i n  time) with the  radius vector from the sun t o  the  vehicle. 
d i f fe ren t  angles were allowed before and a f t e r  coast, and these constant angles 
were optimized. 

Such a program has been presented i n  a t w a -  

Two 

In  the  present three-dimensional problem a vehicle is  envisioned with an a r ray  
of  so l a r  panels (or a huge parabolic re f lec tor ) ,  which i s  always maintained per- 
pendicular t o  the radius vector for  maximum efficiency. Rigidly attached t o  t h i s  
array at cer ta in  def in i te  angles are  two e l e c t r i c  th rus te rs ,  one on e i t h e r  side of 
the panels. By rotat ing the whole spacecraft about the radius vector, the thrus t  
vector can be changed while maintaining the  solar panels perpendicular t o  the 
direct ion of the so la r  radiat ion.  The thrus t  vector is  thus constrained t o  a 
conical surface about the radius vector, the constant angle of which can be opti -  
mized. In a rendezvous mission one thrus te r  is used before coast and the  other 
a r t e r ,  thereby avoiding exhausting propellant through the so la r  panels. 

Consider the  typ ica l  spherical  coordinate system i n  the sketch below. 

+ 
7 i s  a un i t  vector i n  the direct ion of the thrus t  which makes a constant angle with 
respect to the  un i t  radius vector r'. If 7 i s  projected in to  the plane perpendicular 
t o  the  radius vector (i .e. ,  the plane defined by the un i t  vectors and gy), t he  
projection makes a variable angle $ with respect t o  the uni t  vector de. 
i s  defined as the  angle tha t  the uni t  vector must pass through for it t o  coincide 
with the projection of ?when the  t r i a d  i s  rotated about gr such tha t  a right-hand 
screw would move i n  the direct ion of the posit ive gr. 

Posit ive JI 
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The following vector relations are used. 
A 

T = Z,cos A +%es inAcos+  +< 4 s i n A s i n $  (A-209) 

(A-210) A - :XI  - x2 - x 3  e , = l T + j T + k ; ~ -  

- X I X 3  +7 x 2 x 3  - k -  - p (A-211) & 

e e = I -  r p  rP r 

(A-212) 

3 

Where p is the projection of the radius vector, r, onto the ecliptic plane. 

Substituting Eqs. (A-210) to (A-212) into Eq. (A-209) 5' can be expressed in terms of 
the Cartesian vector components. 

1 X I X 3  . x 2  7 = ; [ L c o s A + -  r rP s in  A c o s q  -- P s inA sin$ 

sinAcos$ + - P sinAsin $ 1 x x  X I  . (A-213) 

+-i; [+- cosA - P s i n a c o s q ]  

Using Eq. (A-213) the differential equations of constraint, Eqs. (~-28), may 
be written. 

x .  I = x i + 3  ( i  = I )  2,3) 

x 2  & = - f P [ $ - c o s A + -  bc X 
' I x 3  s i n A c o s $ -  - s i n A  s i n * ]  r- 2 P  P 

= - bc f P [ T c o s A +  x2  - x 2 x 3  X I  
r p  sinAcos\lr + - s i n A  P P 

bc x3 P x3 
x 6  f@[TcosA - - r s i n  A c o s q ]  - - r3 

(A-214) 

x2 

r3  
- (A -216) 

(A-217) 
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Furthermore, impose the r e s t r i c t i o n  t h a t  

(A-218) 

(A-219) 

A1 f o r  t <TI 

A2 fo r  t >T2 
A = [  {A-220) 

Once again it i s  most convenient t o  e w r e s s  the problem i n  the  Mayer form. 
The objective function w i l l  be maximum f i n a l  mass fo r  given values of C and pw. 
These last factors  could again be optimized, bu t  this  i s  not considered t o  be 
warranted a t  the present stage. Other factors  besides payload optimization may 
determine lJlw 

where again K is any posi t ive constant. 

The var ia t iona l  Xamiltonian, Eq. (A-37), i s  now wri t ten.  

sin Acos IC/ 
r P  

+ ( X i  x 3 x 4  + x2  x 3 x 5  - p * Xg) 
(A-222) 

The control variables are $ and B ( t ) .  The continuous control  variable $ may be 
determined i n  terms of the state and adjoint variables through the use of Eq. (A-47). 

(A -224) 

Whereas before the control  variables only depended on the adjoint variables, i n  
t h i s  problem an addi t ional  coupling has been introduced by the thrust ing constraint .  
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I n  determining the thrust ing angle $ from Eq. (A-224), there i s  a choice of two 
quadrants. One w i l l  minimize the Hamiltonian while the other w i l l  maximize it. 
The Pontryagin maximum principle,  Eq. (A-64), s t a t e s  t h a t  the choice must be the  
la t ter .  

N e x t ,  the  Weierstrass-Erdmann corner conditions, Eq. (A-63), are examined at 
the switching points T1 and T2 where B changes from 1 t o  0 and vice versa. 
for  H t o  be continuous a t  T1 and T2 the coeff ic ient  of B i n  Eq. (A-222) must vanish 
at these points since a l l  other terms a r e  continuous. 
fo r  t h i s  problem can be wr i t ten  i n  concise form as 

I n  order 

The switching function,Y, 

s inAs inJ /  - - k * ( p x; ) ] - A p  (A-225) 
sinAcosJ/ - - 

P 
p . r ' -  C 

r P  

where 

and 

The Hamiltonian can again be wri t ten as 

(A-226) 

(A-228) 

Applying the maximum principle it i s  seen tha t  the  same condition holds for the  
discrete  control  variable @. 

1 f o r  Y > O  

,3 f o r  Y C O  
(A-98) 

The Euler-Lagrange equations are now determined. 



The last equation w i l l  be used along with t ransversa l i ty  conditions t o  determine 
the optimum values of A 1  and A 2  on e i the r  s ide of the coast period. 
ay/axi i n  Eqs.  (A-229)  are ra ther  involved and w i l l  not be presented here. 
taking the p a r t i a l  derivative of Eq. (A-225)  with respect t o  X i ,  it must be remem- 
bered t h a t  Q is  a f inc t ion  of x i  through Eq.  ( A - 2 2 4 ) .  

The pa r t i a l s  
I n  

The general t ransversa l i ty  condition, Eq. (A-80), fo r  t h i s  problem i s  

6 T TI T 

+ [ - t i d t + x  X j d x j +  Apdp] + X dA,l t X dA2 1 = C (A-232)  
j - l  0 0 A2 T2 

- K d l l ,  

where the switching times T1 and T2,as far as the angles A1 and A 2  a r e  concerned, 
a re  regarded as in te rna l  boundaries. 
vous, d t  = dxj = 0, (J = 1.. .6), and since both A 1  and A 2  are constant i n  time, 

For t he  case of fixed-time planetary rendez- 

and (A-233)  

Equation (A-232) becomes 

Since dpT, dA1 and dA2 are independent variations,  t h e i r  respective coeffi-  
c ien ts  i n  Eq. (A-234)  must each be zero. 

X (T) - X (T2) = 1 X 6  d t = O  
T2 A 2  A 2  
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Using Eqs. (A-220)  and ( A - 2 3 l ) ,  Eqs. ( A - 2 3 5  and (A-236) become 

where Eq. (A-237)  represents two equations, one f o r  the  upper subscripts on A and 
the upper l i m i t s  of integrat ion and the  other fo r  the  lower quant i t ies .  
Eq. ( A - 2 3 7 ) ,  one obtains 

Transposing 

- - A  T' -2 1 (prp)-'[Cos\CIp/.r '-rsinqK - ( p x r ) ] f  d t  
tan A, = T2 

- 1 2  -2. 

2 r ( P r )  p -  r f d t  
0 
T2 

Equations (A-238) determine the optimum constant values of A1 and A2. 

(A-238)  

The equations associated with mass, Eqs .  (A-218) and ( A - 2 3 0 ) ,  can be in te -  
grated by numerical quadrature. 

- sin A sin+ x .  (5 x ? ) ]  d t  
P 

Again p and 
by the primer vector magnitude a t  the switching times. 

are  not independently scaled. The same condition must be sa t i s f i ed  

PI - p2 
PI p 2  

(A -110) 

Since y = 0 at  T, Eq. (A-225)  shows tha t  

sin A ,  cos\CI, -/ -/ sinA, s i n q I  - - a k . ( pI x r , ) ]  (A-241)  
PI 

P, ' r ,  - rl PI 

and the  scaling of hP at 0 can be determined from Eq. (A-240)  with t = T1. 

A - 4 7  



For the  other boundary conditions of planetary flyby, flyby at a given radius, 
and fixed-time o r b i t a l  t ransfer ,  the r e su l t s  of Problem 1 may be consulted because 
the conditions a re  i n  each case the  same. O f  course, i n  the case of flyby, there 
is only one switching time T1 and only one of Eqs. (A-238) is  required. 
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Appendix A Nomenclature - Par t  2 

A Angle between t h r u s t  vector and radius vector 

P 

-+ 

P 

R 

+ 
r 

T 

t 

X 

z 

I n i t i a l  t h rus t  acceleration 

Fract ional  time r a t e  of change of vehicle mass 

Exhaust veloci ty  

Conventional orthonormal vector basis f o r  spherical  coordinates 

Power available function of posi t ion and time 

Planetary posi t ion and veloci ty  fbnctions of cen t ra l  angle 

Variational Hamiltonian 

Conventional orthonormal vector bas i s  for Cartesian coordinates 

A r b  it rary  pos it ive constant 

Vehicle mass 

Power avai lable  

Primer vector 

Radius (given constant) 

Radius vector 

Given instant  of time 

Time 

Posit ion coordinates 

Objective function (corresponds t o  the auxi l ia ry  s t a t e  variable,  
z,  of the Appendix) 

Powerplant spec i f ic  mass 

Discrete control  variable 

Switching f’unction Y 



NOMENCLATURE ( c o n t  ' a) 

Dirac d e l t a  function 

1 for  v= 1 

o f o r  vf 1 
Eroneker de l t a  = 

Small quantity 

Thruster power conversion efficiency 

Standard spherical  coordinate angle 

Ad jo in t  variable 
coordinate 

Adjoint variable 

Ad j o in t  variable 

(or  Lagrange multiplier)  conjugate t o  posit ion 

conjugate t o  veloci ty  component x i  

conjugate t o  the mass 

Vehicle mass f rac t ion  {based on i n i t i a l  mss) 

Thruster f rac t ion  

Pme rplant  f race ion 

Structure f rac t ion  

Fraction of i n i t i a l  mass discarded a t  staging point 

Orbi ta l  cen t ra l  angle 

Projection of radius vector onto e c l i p t i c  plane 

Time - (dummy integration variable) 

Unit vector i n  the direct ion of th rus t  

Standard spherical  coordinate angle 

A n g l e  between uni t  vector and the  projection of 7 onto the + 
e0 and& 
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APPENDIX B 

DERIVATION OF PLANEMCEN!TRIC EQUATIONS FOR 
HIGH-LOW THRUST OPERATIONS 

The f i rs t  integrals  of the  equation of motion i n  d i f f e ren t i a l  form which 

The fora  of the vehicle th rus t  acceleration is displayed. 
describes the  t ra jec tory  of a thrusting vehicle within a planetary gravi ta t ional  
f i e l d  are derived. 

The basic equation of motion i n  polar coordinates f g r  vehicles thrust ing i n  a 
planetary gravi ta t ional  f i e l d  is : 

where 5 = nondimensional radial distance 

N 

IT = nondimensional vehicle th rus t  acceleration 

- 
= uni t  vector i n  radial direct ion 

iv = unit vector i n  direct ion of instantaneous velocity 

is - 

- 
Consider the two vector operations - ( ) and x ( ): 

and 
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but,  

where E is vehicle t o t a l  energy. 

Theref ore, a -  - =  a V  
d7 

Now, 

but, 

where T! = azimuthal angle 

- 
i, = uni t  vector i n  azimuthal direct ion 

and 

Also, 

and 
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Theref ore > 

Let 

so that 

( instantaneous vehicle angular momentum) 

N 

d o H  
d T  V 
- ( E )  = -- 03-31 

The conversion from dimensional variables to  nondimensional variables may be 
m a & >  as follows: 

5 = + P O  

T = t vc P O  /rpo 

E = e/v:,, 

H = h/rpo vcpo  

c = I,, g, l V C  P 0 

The th rus t  accelerat ion of the  vehicle i s  e i t h e r  

o(.) = o 

oi I- 
C 

J' of /( 1 - -) > T 2 o (Departure) 

! o O o / ( l  - T), 

a ( T )  = 
$ 

0'80 I- 
T s o (Capture) 
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where, 0 = constant t h rus t  acceleration ( C  + m) 

o1 = i n i t i a l  t h rus t  acceleration of vehicle 

OB 0 = f i n a l  th rus t  accelerat ion of vehicle 

C = exhaust speed 
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APPENDIX C 

CONSTANT LOW-THRUST PLANETOCENTRIC SPIRAL 

Perkins' Generalized Equations of Motion 

The problem of analyzing the performance of an e l ec t r i ca l ly  propelled vehicle 
departing from or arr iving onto a parking orb i t  has been studied by Perkins 
(Ref. C-1)  and extended by Edelbaum (Ref. C-2). 
based largely on the results of Perkins and Edelbaum and i s  oriented primarily 
towards simplifying the ana ly t ica l  techniques as much as possible. 

The approach t o  be discussed i s  

The low-thrust vehicle of mass, m, i s  under constant thrust ,  F, which i s  
applied tangentially,  thereby resul t ing i n  the instantaneous velocity vector, V, 
along the path. 
a t  a r ad ia l  distance, R, from the center of the  planet (Fig. C-1) .  

The thrus t  i s  applied a t  an angle, 8 ,  t o  the loca l  horizontal  and 

Fig. C - 1  Low-Thrust Spi ra l  

c-1 
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The t o t a l  acceleration along the radius i s  given by 

F R  
R R2 m V 

+ - -  R2 

where p i s  the  planet ' s  gravi ty  constant. The f i r s t  two terms on the r i g h t  are 
the centr i fugal  acceleration, the th i rd  term i s  the acceleration of gravity a t  R, 
and the  last  term i s  the ve r t i ca l  component of th rus t  acceleration. 

The t o t a l  acceleration along the f l i g h t  path i s  given by 

The rate of change of mass is  

where C i s  the  exhaust veloci ty  and go is  the standard acceleration of gravity on 
the Earth's surface. 

To express the d i f f e ren t i a l  equations i n  a form independent of the  gravi ty  
constant and th rus t  acceleration, Perkins introduces the following dimensionless 
paraineters; radius, X; velocity,  Y; and time, T, defined according t o  

and 

where the th rus t  acceleration, F/mE, i s  referenced t o  escape conditions by using 
the mass of the vehicle a t  escape, %. 
Edelbaum defines a dimensionless exhaust velocity, Z, and a charac te r i s t ic  velocity, 

To account fo r  the  variation i n  mass, 

w, by 

c -2 



and 

Introducing the foregoing parameters into the differential equations of 
motion and making Wthe independent variable yields 

and 
X ’  y ’ =  I - - - ,  

X2Y 

where the prime notation indicates differentiation with respect to W. Because 
these equations are independent of the thrust-to-weight ratio, specific impulse, 
and mass of the planet, any solution of these equations represents a family of 
solutions of the original differential equations corresponding to different values 
of thrust-to-weight ratio, specific impulse, and initial conditions. Further, 
where the solution is independent of the initial conditions, one solution curve 
will suffice for all cases. 
tions approximate a circular orbit. 

This circumstance occurs when the local flight condi- 

If the vehicle thrust-to-weight ratio is less than starting on a 
circular orbit, X and its derivatives are small and the first of the above differ- 
ential equations becomes Y2 = 1/X. 
flight and, hence, for very small local thrust-to-weight ratios, the trajectory is 
quasi-circular. Consequently, the vehicle w i l l  pass through the initial conditions 
of other low-thrust trajectories with the same mean velocity, radius, and flight 
path angle regardless of the starting time and position. Thus, any low-thrust 
spiral trajectory may be represented by one curve of Y versus X or Y versus W, each 
of which depends only on Z. 

This relationship defines circular orbital 

The results of a numerical integration of the generalized equations are 
Positive values of Z correspond to departure presented in Figs. C-2, C-3, and C-4. 

from a circular orbit while negative values correspond to approach. The constant 
thrust-acceleration results of Ref. 1 are included in these figures and correspond 
to the case of Z + ** 

From Fig. C-3 it can be seen that the curves approach a slope of -1 at high 
circular velocities and a slope of +l at high hyperbolic velocities. Thus it is 
possible to utilize simple linear expressions for the dimensionless characteristic 



velocity,  W, (referenced t o  escape) required t o  reach a mean path velocity,  Y. 
an example, i f  the lower asymptotes are used (conservative bas i s  ), then 

A s  

Y = + W t 0.941 = Z In (2) - + 0.941, 

for  e i the r  s t a r t i n g  from (fz) or ar r iv ing  a t  (-Z) escape conditions with f i n a l  or  
i n i t i a l ,  respectively,  high hyperbolic speeds. Also 

Y = - W  + 0.805 = - Z In(%) + 0.805 

for  e i the r  s t a r t i n g  from (+Z) or  a r r iv ing  onto (-Z)  a c i rcu lar  o rb i t  with f i n a l  or 
i n i t i a l ,  respectively,  escape speed. 

A region of va l id i ty  can be described depending on a given tolerable  e r ro r .  
If an e r ror  of about 5% is  acceptable, then 

W < - 1.0 and Y > 1.8 between c i rcu lar  and escape velocity,  
W > -t 1.0 and Y > 1.95 between escape and hyperbolic velocity.  

Thus, t o  use the simplified expressions it i s  necessary t o  assure tha t  no case is  
encountered which leads t o  W's and Y ' s  which v io la te  the above r e s t r i c t ions .  

U s e  of Simplified Expressions 

The following discussion presents the r e su l t s  of t rans la t ing  the dimensionless 
equations i n t o  vehicle system and t ra jec tory  terms. 

Planetary Departure 

If  the vehicle starts from a c i rcu lar  o r b i t  and goes t o  escape conditions, the 
equation i s  

Y = - z In (z) t 0.805 

Substi tuting the  def in i t ions  of Y and Z, and after some manipulating, the mass 
r a t i o  required i s  

I /4 I /4 
c i rcu lar  o rb i t  t o  

exp { + [ I - 0.805 ( '$$) (%) 11 e s cape 
% =  
mE 

c-4 
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where mC is  the i n i t i a l  mass on the  c i rcu lar  orb i t ,  Vc is  the  c i rcu lar  speed, and 
% i s  the mass a t  escape. The t e r m  I?/% i s  the i n i t i a l  thrust-to-weight r a t i o .  
Note t h a t  because the thrust-to-weight r a t i o  i s  usually known a t  the i n i t i a t i o n  
of low thrus t  ra ther  than a t  burnout, an i t e r a t i v e  procedure i s  required t o  
determine t~+/%. 
exponential and using the f a c t  that t~+/% i s  approximately 1.0. 

Alternatively, an exp l i c i t  form may be obtained by expanding the  

If the vehicle starts from escape veloci ty  and is t o  achieve a hyperbolic 
velocity, VH, a t  inf ini ty ,  the appropriate equation i s  

Y = z In (%) + 0.941 

This can be t ranslated i n t o  system terms. Thus 

escape t o  hyperbolic mE VH 0.941 
C 

- = exp[ 
mH 

where mH i s  the mass a t  in f in i ty  and F/% i s  the i n i t i a l  thrust-to-weight r a t io .  
Since I?/% i s  known i n i t i a l l y ,  mE/mE may be computed d i rec t ly .  

The mass r a t i o  required t o  achieve a hyperbolic speed s t a r t i ng  from a circular  
parking orb i t  may be found by combining the two foregoing portions of the overal l  
t ra jectory.  Hence 

1/4 I /4 F/m 
vc C [ I  - 1.746 ( $Rzz) (%) ]}  c i rcu lar  t o  hyperbolic 

Where %/mE i s  found from the circular  orbit-to-escape equation and F/w i s  the 
i n i t i a l  thrust-to-weight r a t io .  

The corresponding l i d t a t i o n s  on velocity, assuming an allowable e r ror  of 
about 5$, become 

circular  t o  escape 



VH L 1.95 ( I  U- escape t o  hyperbolic 

Planetary Capture 

For a vehicle a t  i n f i n i t y  approaching the  planet with some hyperbolic speed, 
the corresponding l i nea r  equation i s  

Y = Z In ($) + 0.941 

Substi tuting the def ini t ions for  Y and Z and accounting for  Z being negative for 
capture, the mass r a t i o  equation becomes 

where % is the i n i t i a l  mass 
because the thrust-to-weight 

0 941 
hyperbollc t o  escape 

and F/mH the i n i t i a l  thrust-to-weight r a t io .  Again, 
r a t i o  i s  known a t  s ta r tup  rather  than a t  burnout, an 

i t e r a t i v e  procedure i s  necessary t o  determine mH/%. 

Using the same procedure as before, the mass r a t i o  necessary t o  achieve a 
c i rcu lar  orb i t  from an i n i t i a l  escape velocity is  given by 

The two foregoing expressions are combined t o  obtain the  mass r a t i o  required 
Thus for capturing onto a c i rcu lar  o rb i t  from a hyperbolic veloci ty  a t  in f in i ty .  

F/mH 1/4 I /4 [ I - 1.746 ( %2) (2) ] } hyperbolic t o  c i rcu lar  

where %/% i s  the r a t i o  of the i n i t i a l  mass t o  the mass on the c i rcu lar  orb i t  and 
mH/% i s  obtained from the hyperbolic-to-escape equation. 

c -6 



The appropriate l imi ta t ions  on veloci ty  f o r  a low-thrust planetary capture 
s p i r a l  are  given by 

vc 1 1.8 ( p- c i rcu lar  t o  escape 

hyperbolic t o  escape 

A s  can be seen, the u t i l i t y  of the foregoing overa l l  approach t o  the analysis 
of low-thrust planetocentric operations i s  i n  the r e l a t ive ly  simple equations 
involved; it is  not necessary t o  solve a system of d i f f e r e n t i a l  equations. 
l imi ta t ion  of th i s  simplified approach, however, i s  i n  the r e s t r i c t i o n  of c i rcu lar  
and hyperbolic speeds required by the  l inear ized dimensionless equations. 
example of t h i s  r e s t r i c t i o n  i s  shown i n  Table C-1. Note tha t  some values of Y are 
less than the maximum of 1.95 allowed f o r  thrust ing t o  some hyperbolic speed. An 
addi t ional  basic  l imi ta t ion  i s  the assumption tha t  the vehicle possesses a given 
hyperbolic veloci ty  at the planet ' s  sphere of influence rather than a t  inf in i ty .  

The 

An 

c -7 
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RADIUS DISTANCE WHEN3 HYPEBBOLIC SPEED IS A I = H m  

Hyperbolic speed = 4.5 km/sec 
Ion thrustor, d = 20 km/sec 

Powerplant specific mass = 20 kg/kw 
Earth's activity sphere = 116 Earth Radii 

Y RBO, Earth radii - W - C, km/sec 

40 o .006 3 .Oh i34 
0.020 2.25 41.6 
0,100 1.51 6.6 

100 0.006 3-72 296 
0.020 2 975 96 
0 .loo 1.84 18 
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FLIGHT PATH ANGLE AT VARIOUS RADIUS DISTANCES 

CONSTANT LOW -THRUST PLANETOCENTRIC SPIRAL 

PARAMETRIC RADIUS DISTANCE - X 
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